

Evaluación de la efectividad antimicrobiana de la luz UV-C 222 nm como estrategia de tratamiento para la preservación de especímenes biológicos en líquido de la Colección "José Ricardo Cure Hakim" de la Universidad Militar Nueva Granada

Maria Alejandra Gonzalez-Torres, Nelsy Rocio Pinto-Sanchez

Resumen: Las colecciones biológicas son registros de biodiversidad. No obstante, el biodeterioro representa una amenaza para su conservación por lo que resulta crucial evaluar tratamientos que mitiguen los daños asociados. Este artículo evaluó la efectividad antimicrobiana de la luz UV 222 nm frente a microorganismos en la piel de especímenes de vertebrados preservados en líquido de la colección "José Ricardo Cure Hakim", Universidad Militar Nueva Granada, Cajicá, Colombia. Los microorganismos fueron obtenidos por hisopado, aislados e identificados molecular y morfológicamente. La actividad antimicrobiana in vitro se evaluó con microorganismos sobre perlas de vidrio en 4 tiempos. Tras la irradiación se realizaron cálculos de porcentajes de inhibición. El efecto sobre ejemplares se analizó mediante hisopado. Se identificaron géneros de *Bacillus* y *Paenibacillus*. La luz UV 222 nm mostró efecto inhibitorio sobre el crecimiento bacteriano *in vitro* y en ejemplares. Los hallazgos sugieren nuevas estrategias para mitigar el biodeterioro en colecciones biológicas en líquido.

Palabras clave: Colecciones biológicas, biodeterioro, microorganismos, Bacillus, Paenibacillus

Evaluation of the antimicrobial effectiveness of 222 nm UV-C light as a treatment strategy for the preservation of biological specimens in liquid from the "José Ricardo Cure Hakim" Collection at Universidad Militar Nueva Granada

Abstract: Biological collections are records of biodiversity. However, biodeterioration threatens their conservation, making evaluating treatments that mitigate the associated damage crucial. This article assessed the antimicrobial effectiveness of 222 nm UV light against microorganisms on the skin of vertebrate specimens preserved in liquid from the "José Ricardo Cure Hakim" collection at Universidad Militar Nueva Granada, Cajicá, Colombia. Microorganisms were obtained by swabbing, isolated, and identified molecularly and morphologically. In vitro, antimicrobial activity was evaluated with microorganisms on glass beads at four time points. After irradiation, percentage inhibition was calculated. The effect on specimens was analyzed by swabbing. *Bacillus* and *Paenibacillus* genera were identified. 222 nm UV light showed an inhibitory effect on bacterial growth in vitro and on specimens. The findings suggest new strategies to mitigate biodeterioration in liquid biological collections.

Keywords: Biological collections, biodeterioration, microorganisms, Bacillus, Paenibacillus

Avaliação da eficácia antimicrobiana da luz UV-C de 222 nm como estratégia de tratamento para a preservação de espécimes biológicos em líquido da Coleção "José Ricardo Cure Hakim" da Universidade Militar Nueva Granada

Resumo: As coleções biológicas constituem registos de biodiversidade. Contudo, a biodeterioração representa uma ameaça à sua conservação, sendo, por isso, essencial avaliar tratamentos que mitiguem os danos associados. Este artigo avaliou a eficácia antimicrobiana da luz UV de 222 nm face a microrganismos presentes na pele de espécimes de vertebrados preservados em líquido da coleção "José Ricardo Cure Hakim", da Universidade Militar Nueva Granada, em Cajicá, Colômbia. Os microrganismos foram obtidos por zaragatoa, isolados e identificados molecular e morfologicamente. A atividade antimicrobiana in vitro foi avaliada com microrganismos sobre esferas de vidro em quatro intervalos de tempo. Após a irradiação, calcularam-se os percentuais de inibição. O efeito sobre os

exemplares foi analisado através de zaragatoas. Identificaram-se géneros de *Bacillus e Paenibacillus*. A luz UV de 222 nm demonstrou um efeito inibitório sobre o crescimento bacteriano *in vitro* e nos exemplares. Os resultados sugerem novas estratégias para mitigar a biodeterioração em coleções biológicas conservadas em líquido.

Palavras-chave: coleções biológicas, biodeterioro, microrganismos, Bacillus, Paenibacillus

Introducción

Las colecciones biológicas son repositorios en donde se encuentran almacenados especímenes bajo condiciones que permiten mantenerlos en un estado adecuado a través del tiempo (Trujillo, Triviño y Salazar 2014: 97-106). Los especímenes depositados en colecciones contienen información detallada sobre su lugar de origen y están acompañados de datos complementarios (Hilton, Watkins-Colwell y Huber 2021: 379-391).

En Colombia, existen aproximadamente 1.285.425 especímenes de vertebrados depositados en colecciones biológicas a lo largo del territorio (Arbeláez-Cortés, Acosta-Galvis, Donascimiento, González Alvarado y Medina 2017: 97-016). Tal es el caso de la colección "José Ricardo Cure Hakim", de la Universidad Militar Nueva Granada (CZCH), donde se conservan alrededor de 645 especímenes depositados en etanol al 75 %. Los ejemplares pasan primero por un proceso de fijación en formol durante 10 días y posteriormente son transferidos al etanol, que actúa como medio de preservación a largo plazo.

La conservación en líquido es una técnica utilizada en museos y colecciones para preservar especímenes biológicos (Cersoy y Herbin 2022: 157-169). Con el tiempo, esta metodología ha evolucionado para preservar tanto la apariencia externa como los órganos y tejidos internos (Sablier, Davron y Herbin 2020: 87-100). Sin embargo, los especímenes en líquido son vulnerables al biodeterioro causado por microorganismos que degradan lípidos y proteínas, afectando al color, la estructura y otros caracteres externos. Asimismo, en especímenes almacenados en seco también se han documentado procesos de deterioro atribuibles a la acción de microorganismos (Carrillo Chávez, Arias Bermúdez, Nieto Vanegas, Pinto Sánchez y Patiño 2023). Algunos, como Penicillium sp., Cladosporium sp., Scopulariopsis sp., Aspergillus sp. y Trichophyton sp., desarrollan preferencia por materiales como la queratina y la celulosa, los cuales son comunes en los tejidos de reptiles y aves haciéndolos susceptibles a la colonización microbiana (Arenas-Castro, Muñoz-Gómez, Uribe-Acosta, Castaño-Castaño y Lizarazo-Medina 2016).

Entre los factores que favorecen el fenómeno de biodeterioro se destaca la contaminación que ocurre durante la manipulación del ejemplar (Yeates, Zwick y Mikheyev 2016: 83-88). Adicionalmente pueden presentarse fenómenos de resistencia al etanol debido a respuestas de estrés de los microorganismos. Además, la presencia de endosporas bacterianas permite mayor resistencia a fenómenos adversos (Nguyet, Furutani, Ander, Izawa 2022; Kampf 2018). De igual manera, la fijación inapropiada, el uso de alcohol de baja calidad, el estado de los frascos de almacenamiento y la calidad de las etiquetas que

están en contacto con el espécimen favorecen los procesos de biodeterioro (Simmons 2014). Por ello, la elección del líquido, calidad de los frascos de almacenamiento y fijación adecuada son esenciales para prevenir la contaminación de los especímenes y mantenerlos en condiciones favorables a lo largo del tiempo.

Debido a lo mencionado, el biodeterioro tiene graves consecuencias al provocar pérdidas de especímenes de colecciones que son el registro de la biodiversidad (Wen, Ickert-Bond, Appelhans, Dorr y Funk 2015: 477-488). En este sentido, la preservación de especímenes cobra mayor relevancia en la actualidad, ya que en los últimos años su valor ha incrementado, gracias a la digitalización de la información (Meineke, Davies, Daru y Dabis 2019). Para minimizar el riesgo y asegurar su conservación, es de gran importancia realizar la identificación de los microorganismos presentes. El proceso de identificación permite comprender la naturaleza de la amenaza y, al mismo tiempo, es fundamental para implementar estrategias efectivas de conservación y mitigación (Branysova, Demnerova, Durovic y Stiboroca 2022: 245-260). Estudios previos han explorado métodos alternativos que minimizan el biodeterioro en colecciones biológicas sin comprometer la calidad de los especímenes. Dentro de estos destacan el uso de aceites esenciales (Myristica fragrans) y biocidas (amonio cuaternario, óxido de etileno, acroleína y aldehídos diaminas) (Faheem 2019: 554-571; Kakakhel, Wu, Gu, Feng, Shah y Wang 2019). No obstante, estos compuestos pueden ser nocivos tanto para el operador como para el espécimen, sin lograr erradicar por completo los microorganismos.

En particular, se han evaluado biocidas como el alcohol isopropílico y el etanol. En los operadores, su uso puede provocar irritación en la piel, vías respiratorias o el sistema digestivo, e incluso afectar el hígado y riñones (Mohapatra, Yutao, Goh, Ng, Luhua, Tran & Gin 2023; 3-10). Por su parte, en los especímenes, estos compuestos pueden alterar el color de los tejidos, plumajes y pieles, comprometiendo la apariencia y la integridad visual del ejemplar (Neisskenwirth y Troxler 2021; 69-73). Por lo tanto, es esencial implementar un protocolo eficaz que garantice la preservación adecuada de los especímenes presentes en las colecciones biológicas. Entre las herramientas utilizadas para el control de microorganismos, se ha reportado el uso de luz ultravioleta (UV-C) a una longitud de onda correspondiente a 222 nm. La luz UV-C suprime la actividad microbiana al dañar su material genético, formando dímeros en las bases de ácidos nucleicos. Este proceso ocurre cuando una muestra se expone a radiación en el rango de 200 a 280 nm. Los fotones de la radiación transforman las purinas y pirimidinas del ADN o ARN en energía vibracional, alterando su estado y generando daños en el material genético de los microorganismos (Cutler y Zimmerman 2011: 15-23).

Investigaciones con luz UV-C han mostrado resultados efectivos en la inhibición de la actividad bacteriana, sin inducir lesiones mutagénicas en el tejido tratado (Buonanno, Ponnaiya, Welch, Stanislauskas, Randers-Pehrson, Sminelov, Lowy, Owens y Brenner 2017: 483-491). Una gran variedad de estudios ha corroborado la efectividad de la luz UV-C a 222 nm, observando inactivación de más del 90 % en bacterias como Escherichia coli y Staphylococcus aureus tras solo dos minutos de exposición (Xie, Tse, Man, Cheung, Wong, Lam, Huang y Leung 2022: 17-34). Estos avances, se encuentran relacionados con trabajos más actuales que examinaron el efecto biológico de la luz UV a 222 y 254 nm en la piel de humanos y ratones in vivo. Estos hallazgos coinciden con estudios recientes donde se ha observado que la exposición a la luz UV a 222 nm resulta en menos lesiones en el ADN que la exposición a la luz UV a 254 nm (Tavares, Adamoski, Girasole, Lima, Da Silva Justo-Junior, Domingues, Silveira, Margues, De Carvalho, Amrosio, Leme y Dias 2023).

Actualmente, no existen estudios que evalúen los efectos de la luz ultravioleta sobre los especímenes preservados en líquidos. A su vez, no se dispone de estudios que evalúen específicamente la radiación a 222 nm en ejemplares de colección. No obstante, en otros contextos de aplicación se ha publicado que esta longitud de onda no causa daños en capas superficiales, lo que abre la posibilidad de explorar su uso seguro en colecciones biológicas (Buonanno, Ponnaiya, Welch, Stanislauskas, Randers-Pehrson, Sminelov, Lowy, Owens y Brenner 2017: 483-491).

Sobre la base de lo anterior, la implementación de la metodología con luz UV-C podría permitir la preservación a largo plazo de valiosas colecciones de especímenes, ampliando así el potencial de contribución al conocimiento científico. Este artículo es una continuación y ampliación de un estudio previo que demuestra la efectividad de la luz UV 222 nm en la reducción de microorganismos presentes en colecciones biológicas preservadas en líquido (González, Patiño y Sánchez, manuscrito no publicado). A partir de estos resultados, se evaluó la efectividad antimicrobiana de la luz UV 222 nm frente a los microorganismos presentes en la piel de especímenes de vertebrados conservados en líquido de la colección zoológica "José Ricardo Cure Hakim". Es importante mencionar que este estudio representa un primer acercamiento al método; por lo tanto, los resultados obtenidos servirán como referencia para investigaciones futuras, en las que se espera aumentar el número de especímenes analizados (N) y emplear herramientas adicionales que contribuyan a la mejora del nuevo método expuesto.

Metodología

—Selección de especímenes, toma de muestras y caracterización morfológica de microorganismos

En primer lugar, se realizó la selección de los especímenes mediante el criterio de observación de posibles indicadores de crecimiento de microorganismos sobre el ejemplar. De los especímenes seleccionados, se tomaron muestras mediante la técnica de hisopado, siguiendo el protocolo descrito por Simmons y Muñoz-Saba (2005). Posteriormente, las muestras obtenidas se sembraron en agar nutritivo a 37 °C y agar Sabouraud a 25 °C durante 7 días. Las colonias bacterianas aisladas del líquido de conservación (etanol al 75 %) en el que se encontraban preservados los especímenes se purificaron mediante dilución y agotamiento; posteriormente se caracterizaron macroscópica y microscópicamente con tinción de Gram.

— Identificación molecular de microorganismos

Una vez obtenidos los cultivos puros, se almacenaron a una temperatura de 3,5 °C para su transporte al Laboratorio Instrumental de Alta Complejidad (LIAC) de la Universidad de La Salle. En primer lugar, se realizó la extracción del ADN bacteriano utilizando un kit de extracción, siguiendo los protocolos estándar del LIAC. Este proceso involucró lisis celular para liberar el ADN y su purificación. Posteriormente, el ADN se usó para la amplificación del gen 16s del ARN mediante PCR, utilizando los cebadores 27F y 1492R. El ADN amplificado se purificó y se secuenció mediante la técnica de Sanger (Muñoz, Moreno y Verri 2011). Las secuencias obtenidas fueron analizadas con programa Nucleotide BLAST®, que realizó comparaciones con la base de datos del National Center for Biotechnology Information (NCBI).

—Evaluación del efecto antimicrobiano de la luz UV 222 nm (in vitro)

Para evaluar el efecto antimicrobiano de la luz UV 222 nm, se seleccionaron los microorganismos aislados de los especímenes. Dado el tipo de crecimiento de las bacterias sobre los ejemplares biológicos en capas que forman biopelículas, se adaptó la metodología propuesta por Alharbi, Bakitian y Alenzi (2021) para verificar si la luz UV 222 nm inhibe el crecimiento de los microorganismos. Para tal fin, cada aislamiento bacteriano se cultivó en caldo CASO y se incubó durante 24 horas a 37 °C. Posteriormente, se dispusieron perlas de vidrio estériles (4 mm) en tubos Eppendorf de 2 ml que contenían 1 ml de caldo CASO, cada placa se inoculó con 100µ del cultivo y se llevó a incubación durante 5 días a 37 °C (Konrat, Schwebke, Laue, Dittmann y Levin 2016). La exposición a la luz UV 222 nm se realizó disponiendo las perlas con crecimiento en la tapa de una caja de Petri, de tal manera que la luz impactara directamente sobre la superficie de la biopelícula (tres perlas por cada tratamiento y tres perlas de control sin exposición).

Se evaluaron diferentes tiempos de exposición a la luz UV 222 nm utilizando la lámpara de referencia UV Gerani Far-UV Light, UV-CAN (tecnología de KrCl) con intervalos de 5 a 35 minutos y aumentos de 10 minutos (Narita, Asano, Naito, Ohashi, Sasaki, Morimoto, Igirahi y Nakane 2020; Fukuda, Nishikawa, Kobayashi, Okabe, Fujii, Kubota, Otsuyama, Tsuneoka, Hashimoto, Suehiro, Yamasaki y Takami 2022:1268-1270). De igual manera, se evaluó una distancia de exposición correspondiente a 8 cm bajo la lámpara que emite radiación ultravioleta de 222 nm para comprobar el efecto sobre los microorganismos de prueba (Alharbi, Bakitian y Alenzi 2021).

Los tratamientos descritos se aplicaron en una cámara de exposición construida con madera.

Tras la exposición a la luz UV 222 nm, las perlas se depositaron en un tubo Eppendorf con 2 ml de solución salina al 0,85 % estéril, y se realizó el desprendimiento de los microorganismos sobre las perlas, utilizando vórtex tres minutos. Cabe aclarar que se usaron tubos Eppendorf estériles diferentes con solución salina estéril para el antes y el después del tratamiento (Alharbi, Bakitian y Alenzi 2021). De los tubos con los respectivos tratamientos, se realizaron diluciones seriadas correspondientes a 10⁻² y 10⁻³. Posteriormente, se sembraron 0,1 ml en agar nutritivo por cada caja de Petri para el recuento de UFC/ml (Alharbi, Bakitian y Alenzi 2021). Se calculó el porcentaje de inhibición con respecto al control sin exposición a la luz UV (Porcentaje de inhibición=(Control)-(Tratamiento)/(Control)*100).

— Evaluación del efecto antimicrobiano de la luz UV 222 nm sobre ejemplares biológicos

Se seleccionaron especímenes para aplicar el tratamiento con mayor efectividad en el ensayo in vitro. Los especímenes estaban conservados en frascos de vidrio transparente, que contenían etanol al 75 % como líquido conservante. La selección se basó principalmente en la observación de signos visibles de contaminación microbiana y en el estado general de conservación. Entre las alteraciones registradas se evidenciaron capas superficiales de color amarillo claro con consistencia seca, depósitos viscosos y pegajosos amarillos adheridos a la piel, así como turbidez amarillenta en el líquido conservante. En algunos frascos también se observó el almacenamiento de múltiples especímenes en un mismo recipiente. A partir de estos ejemplares, se tomaron muestras de piel mediante la técnica de hisopado en un área de 1 cm², con el fin de determinar la carga microbiana inicial. Posteriormente, se sometió el espécimen a tratamiento de luz UV 222 nm durante 15 minutos (Katara, Hemvani, Chitnis, Chitnis y Chitnis 2008: 241) y después de la exposición se volvió a tomar una muestra microbiológica en el mismo cm2 de la piel del espécimen (postratamiento). Para la exposición, cada ejemplar se retiró del frasco de conservación y se dispuso individualmente en una caja de Petri estéril, irradiando únicamente 1 cm² de la superficie, de manera que el área seleccionada de la piel quedara directamente expuesta a la radiación. Esta metodología se aplicó con el fin de garantizar una irradiación uniforme y evitar la interferencia del material de los frascos de conservación.

Las muestras fueron depositadas en tubos de ensayo con 9 ml de caldo CASO durante 24 horas a 37 °C, para posteriormente realizar diluciones correspondientes a 10-3 y 10-4, sembrarlas en placa y realizar el recuento UFC/cm². Se reportaron los cambios mediante porcentaje de inhibición de los especímenes de prueba con respecto a la concentración de microorganismos antes de la exposición a la luz UV 222 nm (Porcentaje de inhibición=(Antes)-(Después)/(Antes)*100). Se realizó la caracterización visual con registros fotográficos del antes y el después de los ejemplares. Al finalizar el procedimiento, el fluido conservante fue reemplazado por etanol fresco al 75 %, con el

fin de evitar la permanencia de posibles depósitos cromóforos u otros compuestos liberados por los tejidos en el medio original. Asimismo, se recomienda el uso de un colorímetro en futuros ensayos, a fin de cuantificar de manera objetiva y precisa eventuales variaciones en la coloración del fluido.

—Análisis estadísticos

Dado que los datos no seguían una distribución normal y los valores presentes en el eje X fueron categóricos (5 min, 15 min, 25 min y 35 min), se utilizó la prueba no paramétrica de Kruskal-Wallis (H) para evaluar si el porcentaje de inhibición varía con respecto a los tiempos de exposición (Sawyer, 2009). Tras identificar diferencias significativas, se llevó a cabo la prueba post hoc de Dunn para determinar qué pares de tiempos de exposición presentaban diferencias significativas.

Finalmente, para la evaluación antimicrobiana de la luz UV 222 nm sobre los ejemplares biológicos, se aplicó una prueba pareada de Wilcoxon. Esta prueba permitió verificar si existían diferencias significativas entre las mediciones de UFC/cm² antes y después del tratamiento con luz UV 222 nm.

Resultados

—Diagnóstico y caracterización de indicadores de biodeterioro

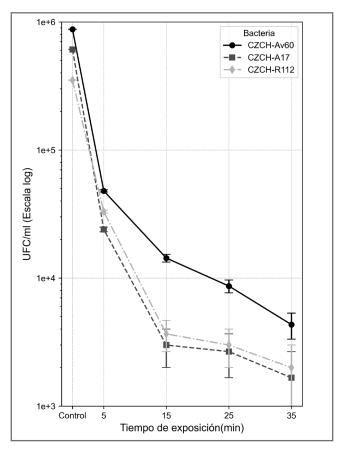
Inicialmente, se realizó una revisión de los 645 especímenes conservados en etanol presentes en la colección CZCH. Tras la revisión, se seleccionaron 18 especímenes de aves, anfibios y reptiles que presentaban posibles indicadores iniciales de biodeterioro como capas viscosas y filamentosas de colores blancos y amarillos sobre la piel. Sin embargo, tras el muestreo solo se obtuvo crecimiento bacteriano a partir de tres especímenes confirmando la afectación por biodeterioro. Entre los especímenes mencionados se encontró un ave (Megascopus choliba), un reptil (Anolis tolimensis), y un anfibio (Pristimantis).

—Caracterización morfológica de los microorganismos aislados a partir de los ejemplares biológicos

Se realizó la identificación morfológica de los microorganismos presentes en las muestras recolectadas, teniendo en cuenta las características macroscópicas de las colonias y la tinción de Gram, lo que permitió detectar un total de tres bacterias con morfologías diferentes de bacilos como se observa a continuación. Para identificar cada ejemplar evaluado se utilizaron las siguientes abreviaturas: Av (aves), A (anfibios) y R (reptiles).

— Identificación molecular de los microorganismos aislados a partir de los ejemplares biológicos

Las bacterias aisladas fueron secuenciadas utilizando amplificación en el gen 16S. La amplificación permitió la


identificación de distintas especies bacterianas con altos niveles de similitud [Tabla 1].

Ejemplar	Especie	Porcentaje identidad	
CZCH-Av60	Bacillus paralicheniformis	– 99,58	
	Bacillus lincheniformis		
CZCH-A17	Paenibacillus xylanexeden	97,37	
	Paenibacillus amylolyticus		
CZCH-R112	Bacillus tequilensis	100	
	Bacillus velezensis		

Tabla 1.- Identificación de especies bacterianas aisladas mediante secuenciamiento del gen 16S. CZCH, Colección Zoológica "José Ricardo Cure Hakim" de la Unviersidad Militar Nueva Granada. CZCH-A (Anfibios), CZCH-R (Reptiles), CZDH-Av (Aves).. El porcentaje de identidad se refiere a cuánto se parecen dos secuencias de ADN, siendo 100 % idénticas y 0 %, totalmente diferentes.

— Evaluación del efecto antimicrobiano de la luz UV 222 nm (in vitro)

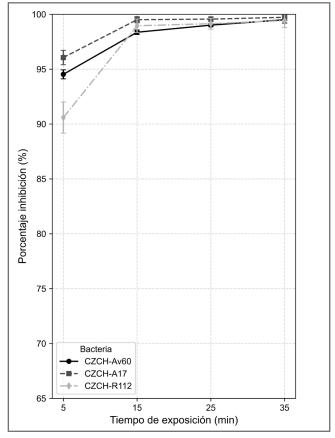

Las bacterias evaluadas alcanzaron una reducción de 2 a 3 unidades logarítmicas en la concentración de UFC/ml. A los 5 minutos de exposición a luz UV 222 nm, la reducción varía entre 1 y 2 unidades logarítmicas, mientras que a los

Figura 1.- Recuento en placa en función del tiempo de exposición a luz UV 222 nm de bacterias aisladas a partir de los ejemplares (*in vitro*). CZCH, Colección Zoológica "José Ricardo Cure Hakim" de la Unviersidad Militar Nueva Granada. CZCH-A (Anfibios), CZCH-R (Reptiles), CZDH-Av (Aves).

15 minutos de exposición a luz UV 222 nm, la disminución comienza a acercarse a las 3 unidades logarítmicas en las bacterias evaluadas. Se evidencia que el control, donde no se aplica ningún tiempo de exposición con luz UV 222 nm, la concentración de bacterias es elevada [Figura 1]. A partir de los 5 minutos de exposición a la luz UV 222 nm, se observa una disminución en la concentración bacteriana. Este descenso alcanza los valores más bajos en tiempos prolongados de 25 y 35 minutos.

En la Figura 2 se refleja lo obtenido en términos de porcentajes de inhibición de crecimiento bacteriano para cada una de las bacterias extraídas por ejemplar. A partir de los 5 minutos de exposición, la mayoría de las bacterias alcanzan valores cercanos al 90 % de inhibición. Mientras que a los 15 minutos de exposición a luz UV 222 nm la inhibición se acerca al 99 % en la mayoría de las bacterias evaluadas. Para evaluar la existencia de diferencias significativas entre los tratamientos con luz UV 222 nm, se aplicó la prueba de Kruskal-Wallis (H), la cual mostró diferencias significativas entre los tratamientos (p<0,05). Posteriormente, se realizó la prueba Post hoc de Dunn para identificar las diferencias específicas, encontrando diferencias significativas únicamente entre los tiempos de exposición de 5 y 15 minutos (p<0,05). A partir de los 15 minutos, no se observaron diferencias significativas, lo que indica que los porcentajes de inhibición son muy similares después de los 15 minutos de exposición.

Figura 2.- Recuento en placa en función del tiempo de exposición a luz UV 222 nm de bacterias aisladas a partir de los ejemplares (*in vitro*). CZCH, Colección Zoológica "José Ricardo Cure Hakim" de la Unviersidad Militar Nueva Granada. CZCH-A (Anfibios), CZCH-R (Reptiles), CZDH-Av (Aves).

— Evaluación del efecto antimicrobiano de la luz UV 222 nm sobre ejemplares biológicos

Basado en la evaluación in vitro, se determinó un tiempo de prueba correspondiente a 15 minutos. El tiempo de exposición a luz UV 222 nm seleccionado se aplicó sobre los ejemplares, ya que las pruebas estadísticas demostraron que, a partir de este tiempo, no había diferencias significativas en los porcentajes de inhibición alcanzados de manera in vitro.

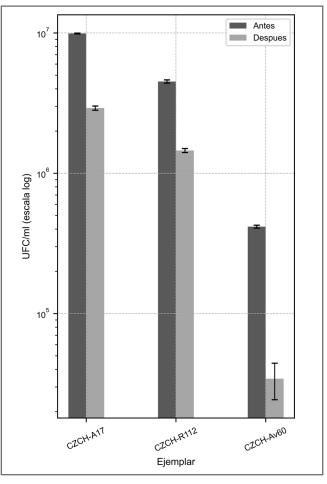
El análisis reflejó una disminución en el número de colonias y UFC/cm2 después de los 15 minutos de exposición a luz UV 222 nm sobre cada uno de los ejemplares. Al realizar la prueba de Wilcoxon se encontraron diferencias significativas entre el antes y el después del tratamiento con exposición durante 15 minutos con luz UV 222 nm (p<0,05) [Figura 3].

Ejemplar	Porcentaje de inhibición (%)
CZCH-Av60	76,19
CZCH-A17	70,56
CZCH-R112	67,85

Tabla 2.- Porcentaje de inhibición alcanzado por ejemplar después de la exposición a luz UV 222 nm durante 15 minutos. CZCH, Colección Zoológica "José Ricardo Cure Hakim" de la Unviersidad Militar Nueva Granada. CZCH-A (Anfibios), CZCH-R (Reptiles), CZDH-Av (Aves).

Antes de la irradiación	Después de la irradiación		
CZCH-Av60			
	(Page)		

CZCH-A17



CZCH-R112

Tabla 3.- Evaluación antimicrobiana de luz UV222 nm sobre los ejemplares. CZCH, Colección Zoológica "José Ricardo Cure Hakim" de la Unviersidad Militar Nueva Granada. CZCH-A (Anfibios), CZCH-R (Reptiles), CZDH-Av (Aves).

Figura 3.- Recuento en placa por ejemplar evaluado antes y después de la exposición a luz UV 222 nm. CZCH, Colección Zoológica "José Ricardo Cure Hakim" de la Unviersidad Militar Nueva Granada. CZCH-A (Anfibios), CZCH-R (Reptiles), CZDH-Av (Aves).

Discusión

— Diagnóstico y caracterización de indicadores de biodeterioro

Únicamente 3 de los 18 especímenes con indicadores visuales de biodeterioro mostraron crecimiento de bacterias, confirmando así la existencia de biodeterioro. Esto sugiere que los signos visibles de biodeterioro pueden tener orígenes no biológicos, como reacciones químicas provocadas durante la conservación de los especímenes (Negi y Sarethy 2019:1014-1029). En algunos de los especímenes que no tuvieron crecimiento microbiano se observaron capas viscosas de colores rosados y amarillos, que pudo haber sido originado por la descomposición de los compuestos orgánicos en el líquido preservante.

Estos hallazgos permiten afirmar que la colección tratada se encuentra en buenas condiciones. Sin embargo, deben considerarse otros factores que pueden afectar su preservación, como el uso de frascos con cierres inadecuados o materiales de baja calidad, que pueden favorecer la evaporación del líquido y, con ello, comprometer la integridad de los especímenes a largo plazo (Simmons y Muñoz-Saba

2005). Durante la revisión se evidenció este problema en algunos frascos, lo que ocasionó la evaporación del líquido y una disminución en la concentración de etanol, condición que pudo favorecer la proliferación microbiana. En este sentido, se recomienda el uso de alcoholímetros en posteriores estudios para verificar la concentración de etanol.

Los análisis realizados evidenciaron la presencia de bacterias, por lo que la evaluación inicial se enfocó únicamente en ellas. No obstante, se proyecta ampliar la investigación hacia el análisis del efecto antifúngico en ejemplares conservados en líquido y seco.

— Identificación molecular de los microorganismos aislados a partir de los ejemplares biológicos

La mayoría de los microorganismos aislados fueron identificados como miembros del género Bacillus. Este género ha sido ampliamente documentado en diversos estudios sobre microorganismos extraídos de colecciones zoológicas. Un análisis realizado por Carrillo Chávez, Arias Bermúdez, Nieto Vanegas, Pinto Sánchez y Patiño (2023), documentó la presencia de estas bacterias en plumas y piel de aves conservadas en seco presentes en una colección biológica de Colombia. Lo anterior sugiere la gran capacidad del género Bacillus para colonizar este tipo de sustratos. Asimismo, se ha observado que Bacillus coloniza la piel de anfibios y reptiles en colecciones zoológicas (lenes-Lima, Prichula, Abadie, Giaretta, Cechin, Lucas y Oliveira 2023), lo cual respalda los resultados obtenidos en el presente estudio. En este contexto, la alta humedad ambiental registrada en la colección analizada (75 % a 80 %) podría haber favorecido el crecimiento del género Bacillus, ya que la disponibilidad de agua es un factor determinante para la proliferación microbiana en especímenes preservados.

Por otro lado, algunas de las especies aisladas como *Bacillus amyloliquefaciens* presentan una alta producción de proteasas, las cuales descomponen proteínas como el colágeno y la queratina que están presentes en las plumas de las aves. A su vez, la especie *Bacillus velezensis* produce lipasas que degradan lípidos y grasas, componentes de las capas externas de la piel (Latorre, Hernández-Velasco, Wolfenden, Vicente, Wolfenden, Menconi, Bielke, Hargis y Téllez 2016). Estos hallazgos concuerdan con los resultados del presente trabajo, en el cual se identificó la presencia de *Bacillus amyloliquefaciens* en un ejemplar de ave [Tabla 1].

En un análisis realizado en una colección anatómica conservada en líquido se encontraron especies como *Bacillus cereus y Bacillus thuringiensis* (Dománski, Janczura, Wanat, Wiglusz, Grajzer, Simmons, Domagała y Szepietowski 2023). Esto difiere un poco de lo encontrado en el presente estudio ya que no se hallaron ese tipo de especies bacterianas debido a la diferencia de especímenes tratados y otros factores como la variación en las condiciones ambientales (temperatura y humedad) y la concentración del líquido conservante. Sin embargo, se observa una similitud en cuanto al género

Bacillus. Por otro lado, el género Paenibacillus no ha sido documentado con la misma frecuencia en el ámbito de colecciones biológicas. No obstante, Paenibacillus ha sido encontrado en la piel de anfibios como Pelophylax perezi, antes de ser recolectados (Proença, Fasola, Lopes y Morais 2021). Esto sugiere que, tras la conservación, almacenamiento y manipulación, estas bacterias pueden permanecer activas y contribuir al biodeterioro de los especímenes. Las bacterias aisladas se caracterizan por desarrollar resistencia al líquido de preservación en el que se encuentran junto al espécimen, en este caso, el etanol. Especies como Bacillus spp. y algunas relacionadas como Paenibacillus, se caracterizan por presentar esta resistencia, generada por endosporas (Pious 2011).

Es importante mencionar que la eficacia del etanol como conservante depende en gran medida de su concentración. En condiciones ideales debe mantenerse al 75 %. Sin embargo, factores como la evaporación del líquido, que incrementa la proporción de agua frente al alcohol, o el uso de frascos mal sellados, pueden disminuir la concentración y con ello favorecer la persistencia y proliferación bacteriana. Asimismo, es fundamental garantizar que el volumen de etanol cubra completamente el espécimen, ya que una cobertura deficiente representa un riesgo adicional para su preservación a largo plazo. Estas condiciones facilitan la supervivencia bacteriana y pueden ejercer presión selectiva que favorece la resistencia de ciertos microorganismos al medio de conservación.

— Evaluación del efecto antimicrobiano de la luz UV 222 nm (in vitro)

Los resultados obtenidos indican que la exposición in vitro a la luz UV 222 nm reduce la concentración de microorganismos. Esta disminución se hace más pronunciada a medida que aumenta el tiempo de exposición, lo que muestra una inhibición del crecimiento bacteriano con valores cercanos o iguales al 90 % a los 5 minutos. Sin embargo, a partir de los 15 minutos, la inhibición se estabiliza en un 99 %, lo que sugiere que los cambios adicionales en la inhibición y la carga microbiana son mínimos a partir de ese punto. Esto indica que se ha alcanzado un umbral donde el tiempo adicional de exposición a la luz UV 222 nm no aumenta notablemente el porcentaje de inhibición del crecimiento bacteriano, evidenciando que la inhibición se mantiene constante. Por lo tanto, para evitar posibles riesgos asociados a una exposición prolongada, es recomendable utilizar un tiempo de exposición menor (Ning, Han, Liu, Liu, Sun, Wang, Wang, Gao, Wang, Wang, Gao, Chen, y Li 2023). No obstante, aún bajo estas condiciones no se logra una esterilización absoluta, lo que plantea la necesidad de considerar tratamientos periódicos o complementarios con otras medidas de conservación, como el cambio del líquido preservante y el control de condiciones ambientales. Asimismo, es importante señalar que este estudio corresponde a una fase inicial exploratoria, por lo que se recomienda continuar con investigaciones futuras que integren herramientas adicionales como el uso de colorimetría y análisis genético de los ejemplares, con el fin de evaluar de manera más precisa los efectos de la luz UV.

En línea con estos hallazgos, el comportamiento observado en los porcentajes altos de inhibición a partir de los 15 minutos en la mayoría de las bacterias tratadas sugiere que el tratamiento con luz UV-C genera reducción de la carga microbiana. En 2024, Peterson y colaboradores emplearon dosis acumulativas de luz UV de 222 nm, ajustando la irradiancia (mW/cm²) en función de los tiempos de exposición. En su estudio, observaron que la luz UV-C a 222 nm lograba una inhibición del 90 % en bacterias como Bacillus pumilus y Bacillus subtilis con una irradiancia de 4,0 mW/cm². Estos resultados difieren de los obtenidos en el presente trabajo. Esta disparidad podría atribuirse a múltiples factores, como la diferencia entre el tipo de microorganismos, la distancia de luz sobre las muestras, y la potencia y configuración de la lámpara UV-C. No obstante, en un análisis realizado por Górny, Golofit-Szymczak, Palak, Lawnickek-Walczyk, Cyprowski, Stobnicka, Plocinska y Kowalska (2024), se demostró que Bacillus subtillis presenta inhibición del 99 % a los 20 minutos de exposición a la luz UV 222 nm. Este resultado concuerda con lo obtenido en el presente estudio donde se observaron porcentajes de inhibición del 99 % a partir de los 15 minutos de exposición.

Es importante recordar que las lámparas de luz UV usadas convencionalmente como germicidas tienen una longitud de onda de 254 nm. La longitud de 254 nm genera daños en la superficie de la piel tanto de humanos como animales penetrando profundamente y causando dimerización de las pirimidinas presentes en el ADN. Sin embargo, la luz UV manejada a una longitud de onda de 222 nm tiene una penetración superficial que afecta únicamente las capas más externas de la piel sin inducir efectos genotóxicos significativos (Yamano, Kunisada, Kaidzu, Sugihara, Nishiaki-Sawada, Ohashi, Yoshioka, Igarashi, Ohira, Tanito y Nishigori 2020). Por tanto, el uso de una longitud de onda de 222 nm es fundamental, ya que permite la prevención y/o disminución del biodeterioro, sin causar daños en el ADN de los ejemplares, preservando así su integridad para estudios futuros. Esto garantiza que los especímenes puedan ser monitoreados y analizados sin comprometer su información genética ni la calidad de su piel tras la exposición.

— Evaluación del efecto antimicrobiano de la luz UV 222 nm sobre ejemplares

En la evaluación del efecto antimicrobiano sobre los ejemplares biológicos, se observó que los porcentajes de inhibición fueron menores en comparación con la evaluación antimicrobiana *in vitro*, debido a múltiples factores [Tabla 2]. Entre ellos se encuentran las estructuras de la piel, los pliegues y las texturas de los especímenes las cuales pueden impedir una exposición uniforme, creando áreas menos expuestas a la radiación UV (Linnie 2000:295-300). Además, estudios previos sobre la luz UV 222 nm en organismos *in vivo* han demostrado mayor inhibición en entornos más controlados. Esto se debe a que los ejemplares biológicos presentan variabilidad en cuanto a estructura y tamaño. Factores como la absorción desigual de la radiación y la protección natural

de los tejidos presentes en los ejemplares pueden reducir los niveles de inhibición (Weihs, Schmalwieser y Schaudberger 2012:609-688). En comparación, los estudios *in vitro* ofrecen condiciones completamente controladas y homogéneas.

Por otro lado, los especímenes no mostraron cambios notorios en sus características físicas, lo que sugiere que la longitud de onda utilizada en el tratamiento no causa alteraciones superficiales [Tabla 3]. Los cambios en las características físicas de los especímenes se midieron de manera cualitativa, mediante observaciones visuales de color, textura y forma de los tejidos, plumajes y pieles, complementadas con fotografías, dado que el presente estudio constituyó un acercamiento preliminar al método. Sin embargo, se recomienda que en estudios futuros se realice una evaluación cuantitativa utilizando instrumentos como colorímetros, lo que permitiría medir con mayor precisión posibles alteraciones. En contraste, Nishigori, Yamano, Kunisada, Nishiaki-Sawada, Ohashi y Igarashi (2023), realizaron mediciones cuantitativas y encontraron que la luz UV 222 nm no genera daños en la epidermis de organismos como ratones en comparación con otras longitudes de onda como 254 nm y 300 nm. Tomando en cuenta estos hallazgos y tras evaluar diferentes tiempos de exposición, se determinó que un tiempo de 15 minutos es el más apropiado para la irradiación con luz UV 222 nm, ya que no provoca desecación en los especímenes durante el proceso, logra altos porcentajes de inhibición y reduce la carga microbiana. El tratamiento con luz UV 222 nm puede ser eficaz para reducir y mitigar el biodeterioro en las colecciones biológicas, disminuyendo así el riesgo de que los microorganismos presentes desarrollen resistencia a productos como el etanol.

Conclusiones

Los microorganismos aislados fueron bacterias Gram positivas, identificadas como Bacillus y Paenibacillus mediante análisis molecular del gen 16S. La luz UV 222 nm redujo la concentración bacteriana en un 90 % a los 5 minutos de exposición, estabilizándose en un 99 % a los 15 minutos, sin incrementos adicionales. Por lo expuesto, se recomienda este tiempo para evitar los riesgos asociados con exposiciones prolongadas. Estos resultados demuestran la efectividad de la luz UV 222 nm para controlar la carga microbiana en especímenes preservados en etanol, ofreciendo una estrategia prometedora para la conservación de la colección zoológica "José Ricardo Cure Hakim" y el control del biodeterioro en colecciones biológicas. No obstante, para garantizar la reducción microbiana, es crucial la correcta elección de los métodos de conservación, los materiales de almacenamiento y los productos utilizados en la preservación, asegurando que minimicen las condiciones de crecimiento microbiano. La combinación de una irradiación adecuada con prácticas de conservación adecuadas contribuye a mantener la integridad de los ejemplares a largo plazo y a reducir significativamente los riesgos de biodeterioro en colecciones biológicas.

Agradecimientos

Agradecemos a Maria Camila Patiño quien fue la promotora de esta idea, y la persona que de forma directa sugirió el diseño experimental en este trabajo, y ha estado atenta al avance. La estudiante Camila Castro Linares fue de gran apoyo en el componente experimental. Estudio derivado del proyecto (INV-CIAS-3956) financiado por la Universidad Militar Nueva Granada - Vigencia (2023).

Referencias

ALHARBI, M., BAKITIAN, F., & ALENZI, A. (2021). "Evaluation of bactericidal effects of ultraviolet light C irradiation on cariogenic bacteria: An in vitro study". *BMC Oral Health*, 21(1). https://doi.org/10.1186/s12903-021-01767-x.

ARBELÁEZ-CORTÉS, E., ACOSTA-GALVIS, A., DONASCIMIENTO, C., GONZÁLEZ ALVARADO, A., MEDINA, C. (2017). "Knowledge linked to museum specimen vouchers: measuring scientific production from a major biological collection in Colombia". *Scientometrics*, 112(3): 1323–1341. https://doi.org/10.1007/s11192-017-2461-4.

ARENAS-CASTRO, H., MUÑOZ-GOMEZ, S. A., URIBE-ACOSTA, M., CASTANO-CASTANO, L., LIZARAZO-MEDINA, P. (2016). "Richness cellulolytic activity, and fungicide susceptibility of fungi from a bird biological collection". *Acta biológica colombiana*. https://repositorio.unal.edu.co/handle/unal/61227.

BRANYSOVA, T., DEMNEROVA, K., DUROVIC, M., & STIBOROCA, H. (2022). "Microbial biodeterioration of cultural heritage and identification 20f the active agents over the last two decades". In *Journal of Cultural Heritage* 55: 245–260). https://doi.org/10.1016/j.culher.2022.03.013.

BUONANNO, M., PONNAIYA, B., WELCH, D., STANISLAUSKAS, M., RANDERS-PEHRSON, G., SMINELOV, L., LOWY, F., OWENS, D., BRENNER, D. (2017). "Germicidal efficacy and mammalian skin safety of 222-nm UV light". *Radiation Research*, 187(4): 483–491. https://doi.org/10.1667/RR0010CC.1.

CARRILLO CHAVEZ, L. M., ARIAS BERMÚDEZ, N., NIETO VANEGAS, M. J., PINTO SANCHEZ, N. R., & PATIÑO, M. C. (2023). "Study of biodeterioration and evaluation of proteolytic activity caused by microorganisms in specimens of a zoological collection in Colombia". *Conservar Patrimonio*. https://doi.org/10.14568/cp24895.

CERSOY, S., HERBIN, M. (2022). "Wet collections: preserving their values for the future! Heritage for the Future, Science for Heritage, A European Adventure for Research and Innovation". *HAL open science*. 157–169. https://hal.science/hal-03889249v1.

CUTLER, T., ZIMMERMAN, J. (2011). "Ultraviolet irradiation and the mechanisms underlying its inactivation of infectious agents". In *Animal health research reviews* .12(1): 15–23. https://doi.org/10.1017/S1466252311000016.

DOMÁNSKI, J., JANCZURA, A., WANAT, M., WIGLUSZ, K., GRAJZER, M., SIMMONS, J.E., DOMAGALA, Z., & SZEPIETOWSKI, J. C. (2023).

"Preservation fluids of heritage anatomical specimens —a challenge for modern science. Studies of the origin, composition and microbiological contamination of old museum collections". *Journal of Anatomy*. https://doi.org/10.1111/joa.13854.

FAHEEM, F. (2019). "Toxic effect of myristica fragrans essential oil against the museum pest Anthrenus verbasci (coleoptera: dermestidae) to control biodeterioration of animal collections". Journal of Bio Innovation, 8(5): 554–571. https://doi.org/10.1038/NPROT.2008.92.

FUKUDA, S., NISHIKAWA, J., KOBAYASHI, Y., OKABE, Y., FUJII, T., KUBOTA, N., OTSUYAMA, K-I., TSUNEOKA, H., HASHIMOTO, S., SUEHIRO. Y., YAMASAKI, T., & TAKAMI, T. (2022). "The bactericidal effect of far-UVC on ESBL-producing Escherichia coli". *American Journal of Infection Control*, 50(11): 1268–1270. https://doi.org/10.1016/j.ajic.2022.04.012

GÓRNY, R. L., GOLOFIT-SZYMCZAK, M., PALAK, A., LAWNICKEK-WALCZYK, A., CYPROWSKI, M., STOBNICKA, A., PLOCINSKA, M., & KOWALSKA, J. (2024). "Effectiveness of UV-C radiation in inactivation of microorganisms on materials with different surface structures". *Annals of Agricultural and Environmental Medicine*, 31(2): 287–293. https://doi.org/10.26444/aaem/189695

HILTON, E., WATKINS-COLWELL, G., HUBER, S. (2021). "The Expanding Role of Natural History Collections". *Ichthyology and Herpetology*, 109(2): 379–391. https://doi.org/10.1643/t2020018.

IENES-LIMA, J., PRICHULA, J., ABADIE, M. (2023). "First Report of Culturable Skin Bacteria in Melanophryniscus admirabilis (Admirable Redbelly Toad)". Microb Ecol 86: 756–761. https://doi.org/10.1007/s00248-022-02069-7.

KAKAKHEL, M.A., WU, F., GU, J. D., FENG, H., SHAH, K., & WANG, W. (2019). "Controlling biodeterioration of cultural heritage objects with biocides: A review." In *International Biodeterioration and Biodegradation*,143. Elsevier Ltd. https://doi.org/10.1016/j.jibiod.2019.104721.

KAMPF, G. (2018). "Ethanol. In Antiseptic Stewardship". Springer International Publishing. MDPI. 9-35. https://doi.org/10.3390/books978-3-7258-2915-6.

KATARA, G., HEMVANI, N., CHITNIS, S., CHITNIS, V., & CHITNIS, D. S. (2008). Surface disinfection by exposure to germicidal UV light. *Indian Journal of Medical Microbiology*, 26(3): 241–242. https://doi.org/10.4103/0255-0857.42034.

KONRAT, K., SCHWEBKE, I., LAUE, M., DITTMANN, C., LEVIN, K., ET AL. (2016). "The Bead Assay for Biofilms: A Quick, Easy and Robust Method for Testing Disinfectants". *PLOS ONE* 11(6): e0157663. https://doi.org/10.1371/journal.pone.0157663

LATORRE, J.D, HERNANDEZ-VELASCO, X., WOLFENDEN, R. E., VICENTE, J.L., WOLFENDEN, A. D., MENCONI, A., BIELKE, L., HARGIS, B.M., & TLLEZ, G. (2016). "Evaluation and selection of Bacillus species based on enzyme production, antimicrobial activity, and biofilm synthesis as direct-fed microbial candidates for poultry". *Frontiers in Veterinary Science*. https://doi.org/10.3389/fvets.2016.00095

LINNIE, M, J. (2000). "Prevention of biodeterioration in natural history collections: Potential trends and future developments". In *Museum Management and Curatorship*. Taylor & Francis. 18(3): 295–300). https://doi.org/10.1080/09647770000501803

MEINEKE, E., DAVIES, T., DARU, B., DABIS, C. (2019). "Biological collections for understanding biodiversity in the Anthropocene". In *Philosophical Transactions of the Royal Society B: Biological Sciences*. https://doi.org/10.1098/rstb.2017.0386

MOHAPATRA, S., YUTAO, L., GOH, S. G., NG, C., LUHUA, Y., TRAN, N. H., & GIN, K. Y. H. (2023). Quaternary ammonium compounds of emerging concern: Classification, occurrence, fate, toxicity and antimicrobial resistance". *Journal of Hazardous Materials*, 3-10. https://doi.org/10.1016/j.jhazmat.2022.130393.

MUÑOZ, MORENO, G., &-VERRI. (2011). "Estandarización de un protocolo de caracterización molecular para la identificación de especie de cepas terrestres de bacterias del género Brucella". Revista Sapuvet de Salud Pública. https://revistas.lasalle.edu.co/index.php/us/article/view/5086.

NARITA, K., ASANO, K., NAITO, K., OHASHI, H., SASAKI, M., MORIMOTO, Y., IGIRAHI, T., & NAKANE, A. (2020). "Ultraviolet C light with wavelength of 222nm inactivates a wide spectrum of microbial pathogens". <u>Journal of Hospital Infection</u>. https://doi.org/10.1016/j.jhin.2020.03.030.

NEISSKENWIRTH, F., & TROXLER, M. (2021). Biocides and other harmful substances on dry and fluid preserved specimens, 63-72. https://doi.org/10.11588/arthistoricum.1179.c16172

NEGI, A., & SARETHY, I. P. (2019). "Microbial Biodeterioration of Cultural Heritage: Events, Colonization, and Analyses". Microbial Ecology, 78(4): 1014–1029. https://doi.org/10.1007/s00248-019-01366-y

NGUYET, A., FURUTANI, N., ANDER, R., IZAWA, S. (2022). "Acquired resistance to severe ethanol stress-induced inhibition of proteasomal proteolysis in Saccharomyces cerevisiae". *Biochimica et Biophysica Acta*. https://doi.org/10.1016/j.bbagen.2022.130241

NING, P., HAN, Y., LIU, Y., LIU, S., SUN, Z., WANG, X., WANG, B., GAO, F., WANG, Y., WANG, Y., GAO, X., CHEN, G., & LI, X. (2023). "Study on disinfection effect of a 222nm UVC excimer lamp on object surface". *AMB Express*. https://doi.org/10.1186/s13568-023-01611-1

NISHIGORI, C., YAMANO, N., KUNISADA, M., NISHIAKI-SAWADA, A., OHASHI, H., & IGARASHI, T. (2023). "Biological Impact of Shorter Wavelength Ultraviolet Radiation-C". In *Photochemistry and Photobiology* 99(2): 335–343. https://doi.org/10.1111/php.13742

PIOUS, T. (2011). "Long-Term Survival of Bacillus Spores in Alcohol and Identification of 90% Ethanol as Relatively More Spori/Bactericidal". *Current Microbiology*. https://doi.org/10.1007/s00284-011-0040-0

PROENÇA, D. N., FASOLA, E., LOPES, I., MORAIS, P. V. (2021). "Characterization of the Skin Cultivable Microbiota Composition of the Frog Pelophylax perezi Inhabiting Different Environments". Int *J Environ Res Public Health*. https://doi.org/10.3390/ijerph18052585

SABLIER, M., DAVRON, C., & HERBIN, M. (2020). "Characterization of the JAR Sealants in the Fluid Collections of the Muséum National D'histoire Naturelle". Collection Forum, 34(1): 87–100. https://doi.org/10.14351/0831-4985-34.1.87

SAWYER, S. F. (2009). "Analysis of Variance: The Fundamental Concepts". *Journal of Manual & Manipulative Therapy*, 17(2): 27E-38E. https://doi.org/10.1179/jmt.2009.17.2.27E.

SIMMONS, J. E., & MUÑOZ-SABA, YANETH. (2005). "Cuidado, manejo y conservación de las colecciones biológicas". Universidad Nacional de Colombia: Conservación Internacional. https://www.researchgate.net/publication/266249611 Cuidado Manejo y Conservacion de las Colecciones Biologicas

SIMMONS, J.E. (2014). "Fluid Preservation: A Comprehensive Reference". Environmental Science. https://doi.org/10.5771/9781442229662

TAVARES, R. S. N. ADAMOSKI, D., GIRASOLE, A., LIMA, E. N., DA SILVA JUSTO-JUNIOR, A., DOMINGUES, R., SILVEIRA, A.C.C., MARQUES, R. E., DE CARVALHO, M., AMROSIO, A. L. B., LEME, A. F. P., & DIAS, S.M.G. (2023). "Different biological effects of exposure to far-UVC (222nm) and near-UVC (254nm) irradiation". *Journal of Photochemistry and Photobiology*. https://doi.org/10.1016/j.jphotobiol.2023.112713.

TRUJILLO, E., TRIVIÑO, P., SALAZAR, L. (2014). "Clasificación, manejo y conservación de colecciones biológicas: una mirada a su importancia para la biodiversidad". Momentos de Ciencia, 11(2) ,97–106.https://www.researchgate.net/publication/305682393_Clasificacion_manejo_y_conservacion_de_colecciones_biologicas_una_mirada_a_su_importancia_para_la_biodiversidad

WEN, J., ICKERT-BOND, S. M., APPELHANS, M. S., DORR, L. J., & FUNK, V. A. (2015). "Collections-based systematics: Opportunities and outlook for 2050". *Journal of Systematics and Evolution*, 53(6): 477–488. https://doi.org/10.1111/jse.12181

WEIHS, P., SCHMALWIESER, A. W., & SCHAUBERGER, G. (2012). "UV Effects on Living Organisms". *Environmental Toxicology*, 609–688. https://doi.org/10.1007/978-1-4614-5764-0 22

XIE, R., TSE, G. Y. K., MAN, L. C. L., CHEUNG, A. L. H., WONG, D. T. C., LAM, E. H. M., HUANG, H., & LEUNG, D. Y. C. (2022). "Systematical Investigations on Disinfection Effectiveness of Far-UVC (222 nm) irradiation: From Laboratory Study to Field Tests". *Journal of Applied & Environmental Microbiology*, 10(1): 17–34. https://pubs.sciepub.com/jaem/10/1/3

YAMANO, N., KUNISADA, M., KAIDZU, S., SUGIHARA, K., NISHIAKI-SAWADA, A., OHASHI, H., YOSHIOKA, A., IGARASHI, T., OHIRA, A., TANITO, M., & NISHIGORI, C. (2020). "Long-term Effects of 222nm ultraviolet radiation C Sterilizing Lamps on Mice Susceptible to Ultraviolet Radiation". Photochemistry and Photobiology, 96(4): 853–862. https://doi.org/10.1111/php.13269

YEATES, D., ZWICK, A., MIKHEYEV, A. (2016). "Museums are biobanks: unlocking the genetic potential of the three billion specimens in the world's biological collections". *Insect Science*, 18: 83–88. https://doi.org/10.1016/j.cois.2016.09.009

Autor/es

Maria Alejandra Gonzalez Torres malejagon14@hotmail.com Facultad de Ciencias Básicas y Aplicadas Universidad Militar Nueva Granada Cajicá, Colombia https://orcid.org/0009-0009-2109-1486

Bióloga de la Universidad Militar Nueva Granada, con experiencia en microbiología, conservación de colecciones científicas y análisis estadístico de datos biológicos. Ha participado en investigaciones sobre el uso de luz ultravioleta para la desinfección de especímenes biológicos, así como en el estudio de pigmentos bacterianos con propiedades antimicrobianas. Interesada en la aplicación de herramientas microbiológicas para la conservación del patrimonio biológico. Se distingue por su responsabilidad, pensamiento crítico y capacidad para trabajar en equipo.

Nelsy Rocio Pinto Sánchez
Nelsy.pinto@unimilitar.edu.co
Facultad de Ciencias Básicas y Aplicadas
Universidad Militar Nueva Granada
Cajicá, Colombia
https://orcid.org/0000-0001-7561-2982

Bióloga, docente con especial interés en procesos de diversificación en la región Neotropical. Curadora de la colección zoológica "José Ricardo Cure Hakim" de la Universidad Militar Nueva Granada, Cajicá, Colombia. Interesada en el mantenimiento de las colecciones zoológicas.

Artículo enviado 14/05/2025 Artículo aceptado el 09/10/2025

https://doi.org/10.37558/gec.v28i1.1404