Investigación multianalítica y conservación de herramientas de cobre únicas de la Edad oscura del Antiguo Egipto

Palabras clave: Edad Oscura, herramientas de modelo de cobre, primer período intermedio, productos de corrosión, hilos inertes transparentes

Resumen

El artículo presentó una investigación multianalítica de un conjunto único de herramientas de cobre que se remonta a la Edad Oscura, de la tumba de KHENNU Y APA-EM-SA-F (289) en el sur de Memphis, Saqqara. Se utilizó estereomicroscopio para examinar la morfología de los productos de corrosión de la superficie exterior. Se utilizó un microscopio metalográfico para investigar la microestructura del núcleo metálico y la estratigrafía de las capas de corrosión. Se utilizó SEM-EDX para identificar la composición elemental de los objetos. Se utilizó espectroscopía XRD y Raman para analizar la superficie externa y la corrosión interna, respectivamente. La investigación microscópica reveló que las capas de corrosión consisten en una capa externa, una capa debajo de la superficie y productos de corrosión internos. Cuprita, paratacamita, nantokita, atacamita, malaquita y calconatronita fueron identificadas por espectroscopía XRD y Raman como corrosión superficial e interna. SEM-EDX reveló que los objetos del estudio de caso consisten en metal de cobre sin ningún elemento de aleación adicional. El estudio presentó un tratamiento adecuado para estos objetos friables o tales casos, y luego presentó un procedimiento de fijación seguro mediante una técnica de costura a través de hilos inertes transparentes. Los resultados revelaron que el ambiente de enterramiento y el almacenamiento a largo plazo en un ambiente incontrolado juntos causaron una corrosión progresiva de los artefactos estudiados.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Manal Maher, Egyptian Museum in Cairo

PH.D researcher in Postgraduate collage of nanotechnology, Cairo University , Egypt, Egyptian Museum in Cairo

Yussri Salem , Conservation Department, Faculty of Archaeology, South Valley University, Qena 83523, Egypt

Lecturer, Conservation Department, Faculty of Archaeology, South Valley University, Qena 83523, Egypt.

Citas

ANON (1968). The World Book Encyclopedia Volume 7. s.l.: Field Enterprises Educational Corp.

BELLOT-GURLET, L., et al. (2009). Raman Studies of Corrosion Layers Formed on Archaeological Irons in Various Media. Journal of Nano Research, Issue 8: 147–156. https://doi.org/10.4028/www.scientific.net/JNanoR.8.147

BERTOLOTTI, G., BERSANI, D., LOTTICI, P.P., ALESIANI, M., MALCHEREK, T. AND SCHLÜTER, J. (2012). Micro-Raman study of copper hydroxychlorides and other corrosion products of bronze samples mimicking archaeological coins. Analytical and bioanalytical chemistry, 402(4): 1451-1457. https://doi.org/10.1007/s00216-011-5268-9

DANIEL COSANO, DOLORES ESQUIVEL, LAURA D. MATEOS, FERNANDO QUESADA, CÉSAR JIMÉNEZ-SANCHIDRIÁN, J. RAFAEL RUIZ (2018). Spectroscopic analysis of corrosion products in a bronze cauldron from the Late Iberian Iron Age. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Volume 205: 489–496.

DRIESSEN, J. (1984). Notes on building materials and quarries. In “An Archaeological Survey of the Roussolakkos Area at Palaikastro”, Volume BSA 79, J.A. MacGillivray, L.H. Sackett, and J. Driessen, eds., 143–149

EVELY, D. (1992). “Stone Vases and Other objects”. s.l.:In Well Built Mycenae, the Helleno-British Excavations within the Citadel at Mycenae, 1959-1969, Fasc. 27. Ground Stone. Part 1, edited by Don Evely and Curtis Runnels, 1 20. Oxford: Oxbow books.

FITZGERALD et al. (2006). Atmospheric corrosion of copper and the colour, structure and composition of natural patinas on copper. Corrosion Science,, 48(9): 2480-2509. https://doi.org/10.1016/j.corsci.2005.09.011

FITZGERALD, K. P., NAIM, J. & ATRENS, A. (1998). The chemistry of copper patination. Corrosion science, 40(12): 2029-2050. http://dx.doi.org/10.1016/S0010-938X(98)00093-6

FROST, R. L., MARTENS, W., KLOPROGGE, J. T. & WILLIIAMS, P. A. (2002). “Raman spectroscopy of the basic copper chlorine minerals atacamite and paratacamite: implications for the study of copper, brass and bronze objects of archaeological significance”. Journal of Raman Spectroscopy, 33(10): 801-806 https://doi.org/10.1002/jrs.921

FROST, R. (2003). Raman spectroscopy of selected copper minerals of significance in corrosion. Spectrochimica acta Part A: molecular and biomolecular spectroscopy, 59(6): 1195-1204 https://doi.org/10.1016/S1386-1425(02)00315-3

GETTENS, R. J. & FRONDEL, C. (1955). Chalconatronite: an alteration product on some ancient Egyptian bronzes. Studies in Conservation, 2(2): 64-75. https://doi.org/10.1179/sic.1955.009

HE, L., LIANG, J., ZHAO, X., & JIANG, B. (2011). “Corrosion behavior and morphological features of archeological bronze coins from ancient China”. Microchemical Journal 99(2): 203-212. https://doi.org/10.1016/j.microc.2011.05.009

IBRAHIM A. G. & MAHER M. A. (2018). “A Case-study of Copper-Arsenic Ewer from the Egyptian Museum in Cairo, Egypt”. Journal of The General Union of Arab Archaeologists, Volume (3), pp. 1-25. https://doi.org/10.21608/JGUAA2.2018.2766.1009

INBERG, A., et al. (2018). Corrosion products and microstructure of copper alloy coins from the Byzantine-period Ma’agan Mikhael B shipwreck, Israel. Microchemical Journal, Volume 143: 400-409. https://doi.org/10.1016/j.microc.2018.08.033

KING, A., JOHNSON, G., ENGELBERG, D., LUDWDIG, W., & MARROW, J. (2008). “Observations of intergranular stress corrosion cracking in a grain-mapped polycrysta”. Science, 321(5887): 382-385. https://doi.org/10.1126/science.1156211

KMOŠEK J., et al. (2016). Archaeometallurgical study of copper alloy tools and model tools from the Old Kingdom necropolis at Giza, chapter in the volume “Old Kingdom copper tools and model tools”. s.l.: Archaeopress Publishing Ltd., Oxford, 238-290. ISBN 978 1 78491 443 1 (e-Pdf)

KRÄTSCHMER, A., WALLINDER, I. O., & LEYGRAF, C. (2002). “The evolution of outdoor copper patina”. Corrosion Science, 44(3): 425-450 https://doi.org/10.1016/S0010-938X(01)00081-6

MAHER, M.A. & SALEM, Y., 2021. An unusual corrosion product, kobyashevite, from ancient egyptian copper artifacts: a technicaL Note. Egyptian Journal of Chemistry, 64(1): 11 – 23. https://doi.org/ 10.21608/EJCHEM.2020.36950.2763

MARTENS, W., FROST, R. L., KLOPROGGE, J. T., & WILLIAMS, P. A. (2003). “Raman spectroscopic study of the basic copper sulfates implications for copper corrosion and ‘bronze disease”. Journal of Raman Spectroscopy, 34(2): 145-151. https://doi.org/10.1002/jrs.969

ODLER, M., & DULÍKOVÁ, V. (2015). “Social context of the Old Kingdom copper model tools”. World Archaeology, 47(1): 94-116. https://doi.org/10.1080/00438243.2014.991805

ODLER, M. (2015). Adzes in the Early Dynastic period and the Old Kingdom, Conference Paper • January 2012 ”Copper and Trade in the South–Eastern Mediterranean ,Trade routes of the Near East in Antiquity”, Edited by Karolina Rosińska-Balik Agnieszka Ochał-Czarnowicz Marcin Czarnowicz Joanna Dębowska-Ludwin 85-109. ISBN 978 1 4073 1414 3

ODLER, M., (2016). Old Kingdom copper tools and model tools. s.l.: Archaeopress Publishing Ltd., Oxford. ISBN 9781784914431 (e-Pdf)

PEKOV, I. V., ZUBKOVA, N. V., YAPASKURT, V. O., BELAKOVSKIY, D. I., CHUKANOV, N. V., KASATKIN, A. V., & PUSHCHAROVSKY, D. Y. (2013). Kobyashevite, Cu5(SO4)2(OH)6•4H2O, a new devilline-group mineral from the Vishnevye Mountains, South Urals, Russia. Mineralogy and Petrology, 107(2): 201-210. https://doi.org/10.1007/s00710-012-0236-4

QUIBELL, J. E. (1908). Excavations at Saqqara (1906-1907) with a section on the religious texts. s.l.: Le caire: imprimerie de l’institut francais d’archeologie orientale. https://archive.org/details/excavationsatsaq1908quib

RADEMAKERS, F. W., VERLY, G., DELVAUX, L., & DEGRYSE, P. (2018). “Copper for the afterlife in pre Dynastic to Old Kingdom Egypt: provenance investigation by chemical and lead isotope analysis”. (RMAH collection, Belgium). J Archaeol Sci., 96: 175-190. https://doi.org/10.1016/j.jas.2018.04.005

ROPRET P., K. T. (2012). Raman investigation of artificial patinas on recent bronze – Part I: climatic chamber exposure. J. Raman Spectrosc., 43: 1578–1586. https://doi.org/10.1002/jrs.4068

SCHINDELHOLZ E.J., CONG H., JOVE-COLON C.F., LI S., OHLHAUSEN J. A., MOFFAT H.K. (2018). Electrochemical aspects of copper atmospheric corrosion in the presence of sodium chloride. Electrochimica Acta, 276: 194-206. https://doi.org/10.1016/j.electacta.2018.04.184

SCOTT, D. A., (1990). “Bronze disease: a review of some chemical problems and the role of relative humidity”. Journal of the American Institute for Conservation (JAIC), 29(2): 193-206. https://doi.org/10.1179/019713690806046064

SCOTT, D. A. (1991). Metallographic and Microstructure of Ancient and Historic Metals (No. 77). s.l.: Los Angeles, CA: The Getty Conservation Institute. ISBN 0-89236-195-6 (pbk.)

SCOTT, D. A. (2002). Copper and bronze in art: corrosion, colorants, conservation. s.l.: Getty publications. ISBN 0-89236-638- 9

STRANDBERG, H., & JOHANSSON, L. G. (1997). “Role of O3 in the atmospheric corrosion of copper in the presence of SO2”. Journal of the Electrochemical Society, 144(7): 2334. https://iopscience.iop.org/article/10.1149/1.1837814/meta

STRANDBERG, H., & JOHANSSON, L. G. (1998). “Some aspects of the atmospheric corrosion of copper in the presence of sodium chlorine”. Journal of the Electrochemical Society, 145(4): 1093-1100. https://iopscience.iop.org/article/10.1149/1.1838422

STRANDBERG, H., LANGER V., & JOHANSSON L.G. (1995). Structure of Cu2.5(OH)3SO4•2H2O: a Novel Corrosion Product of Copper. Acta Chemica Scandinavica, 49(1): 5-10. http://actachemscand.org/pdf/acta_vol_49_p0005-0010.pdf

VINK, B. W., (1986). “Stability relations of malachite and azurite”. Mineralogical Magazine. 50(355): 41-47. https://doi.org/10.1017/minmag.1986.050.355.06

WEISSER, T. D., & BLACK, J. (1987). “The use of sodium carbonate as a pre-treatment for difficult-to-stabilise bronzes”. London, In Recent Advances in the Conservation and Analysis of Artifacts, edited by J. Black, Summers Schools Press, 105-108.

ZHANG, X., WALLINDER, I. O., & LEYGRAF, C. (2014). “Mechanistic studies of corrosion product flaking on copper and copper-based alloys in marine environments”. Corrosion Science, 85: 15-25. https://doi.org/10.1016/j.corsci.2014.03.028

Publicado
2021-06-16
Cómo citar
Maher, M., & Salem , Y. (2021). Investigación multianalítica y conservación de herramientas de cobre únicas de la Edad oscura del Antiguo Egipto. Ge-Conservacion, 19(1), 210-224. https://doi.org/10.37558/gec.v19i1.898
Sección
Artículos