La naturaleza del hueso y su fosilización. La Tafonomía para el estudio del estado de conservación del hueso arqueológico y paleontológico
Resumen
El hueso es un material que aparece frecuentemente en las colecciones de patrimonio cultural y especialmente en las colecciones arqueológicas y paleontológicas. Una correcta diagnosis de su estado de conservación es esencial, sin embargo, la información sobre su naturaleza y las transformaciones que se producen en ellos durante el enterramiento no es muy conocida en los trabajos de conservación. Esto hace que en muchas ocasiones el hueso sea un material desconocido en cuanto a su naturaleza. La Tafonomía se encarga de describir los agentes, procesos y efectos que afectan al hueso en los yacimientos arqueológicos o paleontológicos hasta el momento de su descubrimiento. Ello hace que las propiedades fisicoquímicas del material óseo se modifiquen, aspecto que se debe tener en cuenta en los estudios de conservación y restauración. En este trabajo se describirán distintas características del hueso, agentes que lo modifican y procesos de degradación con el objetivo de exponer un apropiado planteamiento de la naturaleza inicial, estado de conservación y adecuación de tratamientos para este material.
Descargas
Citas
ANDREW, K. (1996). «A summary of the care and preventative conservation of sub‐fossil bone for the non‐specialist or pleistocene problems ‐The sub‐fossil scenario», The biology curator, 5, pp. 24-28.
BARRÓN-ORTIZ, C. et al. (2018). «Conservation of subfossil bones from a lacustrine setting: Uncontrolled and controlled drying of late quaternary vertebrate remains from cold lake, western Canada», Collection Forum, 32(1), pp. 1-13. https://doi.org/10.14351/0831-4985-32.1.1
BEHRENSMEYER, A. K. (1978). «Taphonomic and ecologic information from bone weathering», Paleobiology, 4(2), pp. 150-162. https://doi.org/10.2307/2400283.
BEHRENSMEYER, A. K. (2020). «Taphonomy», Reference Module in Earth Systems and Environmental Sciences, pp. 1-11. https://doi.org/10.1016/b978-0-08-102908-4.00120-x.
BERNA, F.; MATTHEWS, A. ; WEINER, S. (2004). «Solubilities of bone mineral from archaeological sites: The recrystallization window», Journal of Archaeological Science, 31(7), pp. 867-882. https://doi.org/10.1016/j.jas.2003.12.003.
BOETHIUS, A. et al. (2020). «Human encroachment, climate change and the loss of our archaeological organic cultural heritage: Accelerated bone deterioration at Ageröd, a revisited Scandinavian Mesolithic key-site in despair», PLoS ONE, 15(7), pp. 1-23. https://doi.org/10.1371/journal.pone.0236105.
BOUZAS ABAD, A.; LABORDE MARQUEZE, A. (2002). «La degradación del hueso», Monte Buciero, 9, pp. 267-275.
CÁCERES, I. (2002). Tafonomía de yacimientos antrópicos en karst. Complejo Galería (Sierra de Atapuerca, Burgos), Vanguard Cave (Gibraltar) y Abric Romaní (Capellades, Barcelona). Universidad Rovira i Virgili.
CHILD, A. M. (1995). «Towards and understanding of the microbial decomposition of archaeological bone in the burial environment», Journal of Archaeological Science, 22(2), pp. 165-174. https://doi.org/10.1006/jasc.1995.0018.
COLLINS, M J. et al. (2002). «Bone Diagenesis: implications for heritage management», en 9th ICAZ Conference, pp. 124-132.
COLLINS, M. J. et al. (2002). «The survival of organic matter in bone: A review», Archaeometry, 44(3), pp. 383-394. https://doi.org/10.1111/1475-4754.t01-1-00071.
CRONYN, J. M. (2003). Elements of Archaeological Conservation. Routledge. London. https://doi.org/10.2307/1506325.
CURREY, J. (2002). «The structure of bone tissue», en Bones: structure and mechanics. Princeton, pp. 224-225. https://doi.org/ 10.1515/9781400849505.
DAL SASSO, G. et al. (2016). «Bone diagenesis variability among multiple burial phases at Al Khiday (Sudan) investigated by ATR-FTIR spectroscopy», Palaeogeography, Palaeoclimatology, Palaeoecology. Elsevier B.V., 463, pp. 168-179. https://doi.org/10.1016/j.palaeo.2016.10.005.
DEL VALLE, H.; CÁCERES, I. (2020). «Los efectos del hervido en la microestructura ósea. Estado de la cuestión y enfoques metodológicos para su caracterización en el registro arqueológico», ArkeoGazte, 10, pp. 261-275.
DUMONT, M. et al. (2011). «Size and size distribution of apatite crystals in sauropod fossil bones», Palaeogeography, Palaeoclimatology, Palaeoecology, 310(1-2), pp. 108-116. https://doi.org/10.1016/j.palaeo.2011.06.021.
EFREMOV, J. A. (1940). «Taphonomy: new branch of paleontology», American Geologist, 74, pp. 81-93.
ELLINGHAM, S. T. D.; THOMPSON, T. J. U.; ISLAM, M. (2016). «The Effect of Soft Tissue on Temperature Estimation from Burnt Bone Using Fourier Transform Infrared Spectroscopy», Journal of Forensic Sciences, 61(1), pp. 153-159. https://doi.org/10.1111/1556-4029.12855.
VON ENDT, D. W.; ORTNER, D. J. (1984). «Experimental effects of bone size and temperature on bone diagenesis», Journal of Archaeological Science, 11(3), pp. 247-253. https://doi.org/10.1016/0305-4403(84)90005-0.
FERNÁNDEZ-JALVO, Y.; Andrews, P (2003). «Experimental effects of water abrasion on bone fragments», Journal of taphonomy, 1(3), pp. 145-161.
FERNÁNDEZ-JALVO, Y.; CÁCERES, I.; MARÍN-MONFORT, M. D. (2013). «Tafonomía», en Garcia-Diez, M. y Zapata, L. (eds.) Métodos y técnicas de análisis y estudio en la arqueología prehistórica. De lo técnico a la reconstrucción de los grupos humanos. Universida, pp. 367-404
FERNÁNDEZ-JALVO, Y.; ANDREWS, P. (2016). Atlas of Taphonomic Identifications. 1001+1 Images of fossil and recent mammal bone modification. Springer.
FERNÁNDEZ LÓPEZ, R. S. (2000). Temas de Tafonomía. Madrid.
FERNÁNDEZ LÓPEZ, S. R. (2001). «Tafonomía, fosilización y yacimientos de fósiles: Modelos alterenaticos», Enseñanza de Ciencias de la Tierra, 9.2, pp. 116-120.
GABET, E. J.; REICHMAN, O. J.; SEABLOOM, E. W. (2003). «The effects of bioturbation on soil processes and sediment transport», Annual Review of Earth and Planetary Sciences, 31, pp. 249-273. https://doi.org/10.1146/annurev.earth.31.100901.141314.
GARCÍA-VIÑAS, E. et al. (2014). «Diecinueve años de investigación sobre el patrimonio paleobiológico de la Prehistoria Reciente andaluza», pH, 86, pp. 88-100.
GARCÍA FORTES, S.; FLOS TRAVIESO, N. (2008). Conservación y restauración de bienes arqueológicos. Sintesis. Madrid.
GRUPE, G. (1995). «Preservation of collagen in bone from dry, sandy soil», Journal of Archaeological Science, 22(2), pp. 193-199. https://doi.org/10.1006/jasc.1995.0021.
GUADELLI, J.L. (2008). «La gélifraction des restes fauniques. Expérimentation et transfert au fossile». Annales de Paléontologie. 94, pp. 121–165.
HEDGES, R. E. M. (2002). «Bone diagenesis: An overview of the processes», Archaeometry, 44, pp. 319-328.
HEDGES, R. E. M.; MILLARD, A. R. (1995). «Bones and Groundwater: Towards the Modelling of Diagenetic Processes», Journal of Archaeological Science. Academic Press, 22(2), pp. 155-164. https://doi.org/10.1006/JASC.1995.0017.
HEDGES, R. E. M.; MILLARD, A. R.; PIKE, A. W. G. (1995) «Measurements and relationships of diagenetic alteration of bone from three archaeological sites», Journal of Archaeological Science, 22(2), pp. 201-209. https://doi.org/10.1006/jasc.1995.0022.
HUISMAN, H. et al. (2017). «Micromorphological indicators for degradation processes in archaeological bone from temperate European wetland sites», Journal of Archaeological Science. Elsevier Ltd, 85, pp. 13-29. https://doi.org/10.1016/j.jas.2017.06.016.
JANS, M. M. E. et al. (2004). «Characterisation of microbial attack on archaeological bone», Journal of Archaeological Science, 31, pp. 87-95. https://doi.org/10.1016/j.jas.2003.07.007.
KENDALL, C. et al. (2018). «Diagenesis of archaeological bone and tooth», Palaeogeography, Palaeoclimatology, Palaeoecology. Elsevier, 491, pp. 21-37. https://doi.org/10.1016/j.paleo.2017.11.041.
KONTOPOULOS, I. et al. (2019). «Petrous bone diagenesis: a multi-analytical approach», Palaeogeography, Palaeoclimatology, Palaeoecology. Elsevier, 518, pp. 143-154. https://doi.org/10.1016/j.palaeo.2019.01.005.
DE LA BAUME, S. (1990). «Les matériaux organiques», en Berdecou, M. C. (ed.) La conservation en Achéologie Méthodes et practique de la conservation-restauration des vestigues archélogiques. Masson. Paris, pp. 220-270.
LARKIN, N. R.; MAKRIDOU, E. (1999). «Comparing gap-fillers used in conserving sub-fossil material», Geological curators group, 7(2), pp. 81-91.
LEBON, M. et al. (2008). «Characterization of archaeological burnt bones: Contribution of a new analytical protocol based on derivative FTIR spectroscopy and curve fitting of the ν 1 ν 3 PO4 domain», Analytical and Bioanalytical Chemistry, 392(7-8), pp. 1479-1488. https://doi.org/10.1007/s00216-008-2469-y.
LEBON, M. (2010). «The taphonomy of burned organic residues and combustion features in archaeological contexts», Palethnologie, 2, pp. 145-158.
LEBON, M. et al. (2016). «Rapid quantification of bone collagen content by ATR-FTIR spectroscopy», Radiocarbon, 58(1), pp. 131-145. https://doi.org/10.1017/RDC.2015.11.
LYMAN, R. L. (1994). Vertebrate Taphonomy. Cambdridge University Press. https://doi.org/10.1017/CBO9781139878302.
NICHOLSON, R. A. (1993). «A morphological investigation of burnt animal bone and an evaluation of its utility in archaeology», Journal of Archaeological Science, pp. 411-428. https://doi.org/10.1006/jasc.1993.1025.
NIELSEN-MARSH, C. M.; HEDGES, R. E. M. (1999). «Bone porosity and the use of mercury intrusion porosimetry in bone diagenesis studies», Archaeometry, 41(1), pp. 165-174. https://doi.org/10.1111/j.1475-4754.1999.tb00858.x.
NIELSEN-MARSH, C M.; HEDGES, R. E. M. (2000). «Patterns of diagenesis in bone I: The effects of site environments», Journal of Archaeological Science, 27(12), pp. 1139-1150. https://doi.org/10.1006/jasc.1999.0537.
NIELSEN-MARSH, C.M.; HEDGES, R. E. M. (2000). «Patterns of diagenesis in bone II: Effects of acetic acid treatment and the removal of diagenetic CO 32», Journal of Archaeological Science, 27(12), pp. 1151-1159. https://doi.org/10.1006/jasc.1999.0538.
NIELSEN-MARSH, C. M. et al. (2007). «Bone diagenesis in the European Holocene II: taphonomic and environmental considerations», Journal of Archaeological Science, 34(9), pp. 1523-1531. https://doi.org/10.1016/j.jas.2006.11.012.
PÉREZ, L. et al. (2017). «Hearths and bones: An experimental study to explore temporality in archaeological contexts based on taphonomical changes in burnt bones», Journal of Archaeological Science: Reports. Elsevier Ltd, 11, pp. 287-309. https://doi.org/10.1016/j.jasrep.2016.11.036.
PIEPENBRINK, H. (1986). «Two examples of biogenous dead bone decomposition and their consequences for taphonomic interpretation», Journal of Archaeological Science, 13(5), pp. 417-430. https://doi.org/10.1016/0305-4403(86)90012-9.
PINEDA, A. et al. (2019). «Tumbling effects on bone surface modifications (BSM): An experimental application on archaeological deposits from the Barranc de la Boella site (Tarragona, Spain)», Journal of Archaeological Science. Elsevier, 102(October 2018), pp. 35-47. https://doi.org/10.1016/j.jas.2018.12.011.
POKINES, J. T.; BAKER, J. E. (2013). «Effects of Burial Environment on Osseus Remains», en Manual of Forensic Taphonomy. CRC Press, pp. 73-114.
REICHE, I., VIGNAUD, C.; MENU, M. (2002). «The crystallinity of ancient bone and dentine: New insights by transmission electron microscopy», Archaeometry, 44(3), pp. 447-459. https://doi.org/ 10.1111/1475-4754.00077.
RHO, J. Y., KUHN-SPEARING, L.; ZIOUPOS, P. (1998). «Mechanical properties and the hierarchical structure of bone», Medical Engineering and Physics, 20(2), pp. 92-102. https://doi.org/10.1016/S1350-4533(98)00007-1.
ROBERTS, S. J. et al. (2002). «The taphonomy of cooked bone: characterizing boiling and its physico-chemical effects», Archaeometry, 44(3), pp. 485-494. https://doi.org/10.1111/1475-4754.t01-1-00080.
SHIPMAN, P., FOSTER, G. Y SCHOENINGER, M. (1984) «Burnt bones and teeth: an experimental study of color, morphology, crystal structure and shrinkage», Journal of Archaeological Science, 11(4), pp. 307-325. https://doi.org/10.1016/0305-4403(84)90013-X.
SMITH, C. I. et al. (2002). «The strange case of Apigliano: early “fossilization” of medieval bone in southern Italy», Archaeometry, 44(3), pp. 405-415. https://doi.org/10.1111/1475-4754.t01-1-00073.
SMITH, C. I. et al. (2007). «Bone diagenesis in the European Holocene I: patterns and mechanisms», Journal of Archaeological Science, 34(9), pp. 1485-1493. https://doi.org/10.1016/j.jas.2006.11.006.
STINER, M. C. et al. (1995). «Differential Burning, Recrystallization, and Fragmentation of Archaeological Bone», Journal of Archaeological Science, 22, pp. 223-237. https://doi.org/10.1006/jasc.1995.0024.
SUROVELL, T. A.; STINER, M. C. (2001). «Standardizing infra-red measures of bone mineral crystallinity: An experimental approach», Journal of Archaeological Science, 28(6), pp. 633-642. https://doi.org/10.1006/jasc.2000.0633.
THOMPSON, T. J. U. et al. (2011). «An investigation into the internal and external variables acting on crystallinity index using Fourier Transform Infrared Spectroscopy on unaltered and burned bone», Palaeogeography, Palaeoclimatology, Palaeoecology. Elsevier B.V., 299(1-2), pp. 168-174. https://doi.org/10.1016/j.palaeo.2010.10.044.
TRUEMAN, C. N.; MARTILL, D. M. (2002). «The long-term survival of bone: the role of bioerosion», Archaeometry, 44(3), pp. 371-382. https://doi.org/10.1111/1475-4754.t01-1-00070.
TRUEMAN, C. N. G. et al. (2004). «Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: Diagenetic mechanisms and the role of sediment pore fluids», Journal of Archaeological Science, 31(6), pp. 721-739. https://doi.org/10.1016/j.jas.2003.11.003.
TURNER-WALKER, G. (2007). «Degradation pathways and conservation strategies for ancient bone from wet anoxic sites», Proceedings of the 10th ICOM Group on Wet Organic Archaeological Materials Conference: Amsterdam 2007, (September 2007), pp. 659-675.
TURNER-WALKER, G.; SYVERSEN, U. (2002). «Quantifying histological changes in archaeological bones using BSE-SEM image analysis», Archaeometry, 44(3), pp. 461-468. https://doi.org/10.1111/1475-4754.t01-1-00078.
TURNER-WALKER, G. Y JANS, M. (2008) «Reconstructing taphonomic histories using histological analysis», Palaeogeography, Palaeoclimatology, Palaeoecology, 266, pp. 227-235. https://doi.org/10.1016/j.palaeo.2008.03.024.
TUROSS, N. (1989). «Albumin preservation in the Taima-taima mastodon skeleton», Applied Geochemistry, 4(3), pp. 255-259. https://doi.org/10.1016/0883-2927(89)90026-7.
TUROSS, N. et al. (1989). «Molecular preservation and crystallographic alterations in a weathering sequence of wildebeest bones», Applied Geochemistry, 4(3), pp. 261-270. https://doi.org/ 10.1016/0883-2927(89)90027-9.
TÜTKEN, T.; VENNEMANN, T. W. (2011). «Fossil bones and teeth: Preservation or alteration of biogenic compositions?», Palaeogeography, Palaeoclimatology, Palaeoecology, 310(1-2), pp. 1-8. https://doi.org/10.1016/j.palaeo.2011.06.020.
VAN DER VALK, T. et al. (2021). «Million-year-old DNA sheds light on the genomic history of mammoths», Nature, 591, pp. 265-269. https://doi.org/10.1038/s41586-021-03224-9.
VILLAGRAN, X. S.et al. (2017). «Bone annd other skeletal tissues», en Nicosia, C. y Stoops, G. (eds.) Archaeological soil and sediment micromorphology. Wiley Blac, pp. 11-38.
WALKER, P. L., JOHNSON, J. R. ; LAMBERT, P. M. (1988). «Age and sex biases in the preservation of human skeletal remains», American Journal of Physical Anthropology, 76(2), pp. 183-188. https://doi.org/10.1002/ajpa.1330760206.
WEINER, S. (2010). Microarchaeology: beyond the Visible Archaeological Record. Cambridge. https://doi.org/10.1017/CBO9780511811210.
WHITE, E. ; HANNUS, L. A. (1983). «Chemical weathering of bone in archaeological soils», Society for American Archaeology, 48(2), pp. 316-322. https://doi.org/10.2307/280453.
WOPENKA, B.; PASTERIS, J. D. (2005). «A mineralogical perspective on the apatite in bone», Materials Science and Engineering C, 25(2), pp. 131-143. https://doi.org/10.1016/j.msec.2005.01.008.
- Los autores conservan los derechos de autor y propiedad intelectual, y garantizan a la revista Ge-Conservación y al GEIIC el Copyright© de los derechos de edición y publicación por cualquier medio y soporte. Las obras de dichos autores además se pueden publicar bajo una Creative Commons Attribution License que autoriza ser distribuido gratuitamente, copiado y exhibido por terceros si se muestra en los créditos la autoría y procedencia original en esta revista, y no se puede obtener ningún beneficio comercial por parte de terceros, ni tampoco se pueden realizar obras derivadas.
- Los artículos podrán ser utilizados para fines científicos y formativos, pero nunca con fines comerciales, expresamente sancionado por la Ley.
- La información contenida en los artículos es responsabilidad exclusiva de los autores.
- La revista Ge-Conservación y los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) después de su publicación en la revista Ge-Conservación, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados por el autor.
- Los datos personales suministrados por los autores únicamente serán utilizados para los fines de la revista y no serán proporcionados a terceros.