Retopología de mallas aplicada a modelos 3D de patrimonio cultural para la mejora de la visualización interactiva en realidad virtual y realidad aumentada

Palabras clave: patrimonio cultural, retopología, fotogrametría, digitalización 3D

Resumen

El alto peso de archivo en los modelos digitalizados de patrimonio cultural mediante escaneado o fotogrametría obliga a la elaboración de estrategias de reducción topológica que permitan la optimización de estos modelos para su uso en entornos como el museo virtual o cualquier otra forma de visualización interactiva. Atendiendo a su accesibilidad, en este trabajo se estudia la eficiencia de cuatro aplicaciones informáticas utilizadas para el remallado de modelos 3D. Utilizando una metodología basada en la observación de los atributos de la malla, se realiza un análisis comparado de su calidad de visualización. La investigación es desarrollada a través de un estudio de caso mediante el cual, se obtiene un modelo que es verificado con del motor de videojuegos UNITY®2022 1.18. Como resultado, se consigue una alta calidad visual con una mejora significativa en la frecuencia de visualización del 55% de media respecto al modelo 3D original, obtenido mediante fotogrametría.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Manuel Drago Díaz alemán, Facultad de Bellas Artes (Universidad de La Laguna)

Licenciado en Bellas Artes por la Universidad Politécnica de Valencia en 1991 y Doctorado en Bellas Artes por la Universidad de La Laguna en 1995. Responsable del grupo de Investigación Diseño y Fabricación Digital de la ULL. Investigador principal en los proyectos I+D+i de carácter competitivo “Fundición artística de objetos diseñados por ordenador mediante la utilización del ácido poliláctico como sustitutivo del moldeado a la cera perdida HAR2013-43928-P”, “Fundición artística de micro-esculturas diseñadas por ordenador, mediante el desarrollo de técnicas de impresión 3D basadas en el procesado digital de luz HAR2017-85169-R” y “La Célula, unidad de vida: Objeto de divulgación y aprendizaje desde la plataforma online 3D Virtual Lab. FCT-14-8578”. Posee un premio Internacional y cinco Nacionales de Creación Artística. Tiene realizados seis contratos o convenios de I+D+i no competitivos con Administraciones o entidades públicas o privadas. Desde 2011 su línea de investigación se centra en el desarrollo de las nuevas tecnologías de Diseño y Fabricación Digital y su adaptación a los procesos creativos en el ámbito de la Conservación y Restauración de Patrimonio Cultural y las Artes Plásticas. Es experto evaluador en el Área de Historia y Arte de la Agencia Nacional de Evaluación y Prospectiva (ANEP) desde el 2015.

Citas

ABOUELAZIZ, LL., OMAIR, M. EL HASSOUNI, M. y CHERIFI, H. (2015). “Reduced reference 3D mesh quality assessmentbased on statistical models”. En 1th International Conference on Signal-Image Technology and Internet-Based Systems (SITIS), Bangkok: The Institute of Electrical and Electronics Engineers IEEE, 170-176. https://doi.org/10.1109/SITIS.2015.129

ALLIEZ, P., COHEN-STEINER, D., DEVILLER, O., LÉVY, B. y DESBRUN, M. (2003). “Anisotropic polygonal remeshing”. En SIGGRAPH´03:ACM SIGGRAPH 2003 Papers, New York: Association for Computing Machinery, 485-493. https://doi.org/10.1145/882262.882296

APOLLONIO, F. I., FANTINI, F., GARAGNANI, S. y GAIANI, M. (2021). “A Photogrammetry-Based Workflow for the Accurate 3D Construction and Visualization of Museums Assets”, Remote Sensing, 13(3):486. https://doi.org/10.3390/rs13030486

BOTSCH, M., KOBBELT, L., PAULY, M., ALLIEZ, P. y LEVY, B. (2010). Polygon Mesh Processing. London: Routledge Taylor and Francis Group.

CIGNONI, P., MONTANI, C., SCOPIGNO, R. y ROCCHINI, C. (1998). “A general method for preserving attribute values on simplified meshes”. En Proceedings Visualization ´98, Hoes Lane, USA: Institute of Electrical and Electronics Engineers IEEE, 59-66. https://ieeexplore.ieee.org/document/745285

CIPRIANI, L., BERTACCHI, S. y BERTACCHI, G. (2019). “An Optimised Workflow for the Interactive Experience with Cultural Heritage Through Reality-Based 3d Models: Cases Study in Archaeological and Urban Complexes”, ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2(W11): 427-434. https://doi.org/10.5194/isprs-archives-XLII-2-W11-427-2019

DE PAOLIS, L. T., de LUCA, V., GATTO,C., D´ERRICO, G. y PALADINI, G. (2020). “Photogrammetric 3D Reconstruction of Small Objects for a Real-Time Fruition”. En Augmented Reality, Virtual Reality and Computer Graphics, Berlín: Springer Cham, 375-394. https://doi.org/10.1007/978-3-030-58465-8_28

DESBRUN, M., MEYER, M., SCHORÖDER, P. y BARR, A. (1999). “Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow”. En SIGGRAPH´99 26th annual conference on Computer graphics and interactive techniques, Massachusetts: Addison Wesley, 317-324.

DÍAZ-ALEMÁN, M. (2021). “Modelado 3D de precisión en procesos de digitalización de escultura construida”, AusArt Journal for Research in Art, 9(2): 113-125. https://doi.org/10.1387/ausart.23077

HASSAN, M., SHAMARDAN, H. y SADEK, R. (2020). “An Improved Compression Method for 3D Photogrammetry Scanned High Polygon Models for Virtual Reality, Augmented Reality, and 3D Printing Demanded Applications”. En Internet df things. Applications and Future. Proceedings of ITAF2019, Singapore: Springer, 114: 187-200. https://doi.org/10.1007/978-981-15-3075-3_13

HAZAN, S. y HERMON, S. (2014). On defining the virtual museum: A V-Must research project. https://www.academia.edu/6944381/ON_DEFINING_THE_VIRTUAL_MUSEUM_A_V_MUST_RESEARCH_PROJECT [Consulta 14/05/2022].

HUANG, J., ZHOU, Y., NIESSNER, M., SHEWCHUK, R. y GUIBAS, L. (2018). “QuadriFlow: A Scalable and Robust Method for Quadrangulation”, Computer Graphics forum, 37 (5): 147-160. https://doi.org/10.1111/CGF.13498

ICOMOS (2017). Principles of Seville. Inernational Principles of Virtual Archaeology. https://icomos.es/wp-content/uploads/2020/06/Seville-Principles-IN-ES-FR.pdf [Consulta 18/05/2022].

KANG, K. y PARK, C. (2021). “Simplification method of photogrammetry building models based on vectorization techniques”. En International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea: Institute of Electrical and Electronics Engineers IEEE, 293-295. https://doi.org/10.1109/ICTC52510.2021.9620860

LONDON CHARTER (2009). The London charter for the computer-based visualisation of cultural heritage. https://www.london-charter.org /media/files/london_charter_2_1_en.pdf. [consulta: 10/06/2022].

MORITA, M. y BILMES, G. (2018). “Applications of low-cost 3D imaging techniques for the documentation of heritage objects”, Óptica Pura y Aplicada, 51 (2) 50026: 1-11. https://doi.org/10.7149/OPA.51.2.50026

OBRADOVIĆ, M., VASILJEVIC,I., DURIC, I., KIĆANOVIC, J., STOJAKOVIĆ, V. y OBRADOVIĆ, R. (2020). “Virtual Reality Models Based on Photogrammetric Surveys-A Case Study of the Iconostasis of the Serbian Orthodox Cathedral Church of Saint Nicholas in Sremski Karlovci (Serbia)”, Applied Sciences, 10(8): 1-21. https://doi.org/10.3390/app10082743

PANT, S. NEGI, K. y SRIVASTAVA, S. (2021). “3D Asset Size Reduction using Mesh Retopology and Normal Texture Mapping”. En 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), Greater Noida, India: Institute of Electrical and Electronics Engineers IEEE, 1061-1065. https://doi.org/10.1109/ICAC3N53548.2021.9725549

RAJPUT, D. y KISHORE, R. (2012). “Error Analysis Of 3d Polygonal Model:A Survey”, International Journal of Computer Science and Engineering Survey (IJCSES), 3(2): 39-46. https://doi.org/10.5121/IJCSES.2012.3205

ROTH, S. D. (1982). “Ray casting for modeling solids”, Computer Graphics and Image Processing, 18(2):109-144. https://doi.org/10.1016/0146-664X(82)90169-1

SCHÖNBERGER, J. y FRAHM, J.M. (2016). “Structure-from-Motion Revisited”. En IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA: Institute of Electrical and Electronics Engineers IEEE, 4104-4113. https://doi.org/10.1109/CVPR.2016.445

SORKINE, O., COHEN-OR, D., LIPMAN, Y., ALEXA, M., RÖSSL, C. y SEIDEL, H-P. (2004). “Laplacian surface editing”. En Eurographics/ACM SIGGRAPH symposium on Geometry processing, New York, USA: Association for Computing Machinery, 175-184. https://doi.org/10.1145/1057432.1057456

Publicado
2023-10-18
Cómo citar
Díaz alemán, M. D. (2023). Retopología de mallas aplicada a modelos 3D de patrimonio cultural para la mejora de la visualización interactiva en realidad virtual y realidad aumentada. Ge-Conservacion, 24(1), 87-98. https://doi.org/10.37558/gec.v24i1.1147