An in situ experimental study of the hydric behaviour of a section at the western stretch in the medieval wall in Ávila
Abstract
The use of capacitive type probes is new in the field of built heritage, so a specific methodology has been developed, in order to evaluate the behaviour of moisture in a stone masonry wall, filled with mortar and stones, corresponding to section 44-45 at the western stretch in the medieval wall in Ávila. This study shows the value of the FDR probes to analyse the influence of the water input on the wall, from the rainfall and subsoil; as well as the efficiency of the interventions carried out on the same wall to cut the rising damp, such as the waterproofing of the adarve (walkway on the ramparts) and the incorporation of drainage facilities inside and out next to the wall.
Downloads
References
AENOR (2018). UNE-EN 16682 Conservación del patrimonio cultural. Métodos de medición del contenido de humedad, o contenido de agua, en materiales constitutivos del patrimonio cultural inmueble.
AGLIATA, R., GRECO, R. y MOLLO, L. (2018). “Moisture measurements in heritage masonries: A review of current methods”, Materials Evaluation, 76(11): 1468-1477. https://www.researchgate.net/publication/325285165
AGLIATA, R., MOLLO, L. y GRECO, R. (2016). “Use of TDR to compare rising damp in three tuff walls made with different mortars”, Journal of Materials in Civil Engineering, 29(4). https://doi.org/10.1061/ (ASCE)MT.1943-5533.0001794
AZNAR MOLLÁ, J.B., BENLLOCH MARCO, J. y MEDINA RAMÓN, F.J. (2016). El diagnóstico de las humedades de capilaridad en muros y suelos. Determinación de sus causas y origen mediante una metodología basada en la representación y análisis de curvas isohídricas. Tesis doctoral, Universidad Politécnica de Valencia. https://doi.org/10.4995/Thesis/10251/61630
CAMINO, M.S., LEÓN, F.J., LLORENTE, A. y OLIVAR, J.M. (2014). “Evaluation of the behavior of brick tile masonry and mortar due to capillary rise of moisture”, Materiales de Construcción, 64(314): e020. https://doi.org/10.3989/mc.2014.02513
CAMUFFO, D. (2018). “Standardization activity in the evaluation of moisture content”, Journal of Cultural Heritage, 31: S10-S14. https://doi.org/10.1016/j.culher.2018.03.021
CATALDO, A., DE BENEDETTO, E., CANNAZZA, G. et al. (2018). “TDR-based measurements of water content in construction materials for in-the-field use and calibration”, IEEE Transactions on Instrumentation and Measurement, 67(5): 1230-1237. https://doi.org/10.1109/TIM.2017.2770778
ČERNÝ, R. (2009). “Time-domain reflectometry method and its application for measuring moisture content in porous materials: A review”, Measurement, 42(3): 329-336. https://doi.org/10.1016/j.measurement.2008.08.011
FORT, R., ÁLVAREZ DE BUERGO, M., VÁZQUEZ CALVO, M.C. et al. (2015). Caracterización de sales en el interior de la muralla de Ávila para su monitorización (Informe inédito). Instituto de Geociencias (CSIC-UCM). Grupo de Petrología Aplicada a la Conservación del Patrimonio. Laboratorio de Petrofísica.
FREITAS, T.S., GUIMARAES, A.S., ROELS, S. et al. (2020). Time Domain Reflectometry (TDR) technique – A solution to monitor moisture content in construction materials. E3S Web of Conferences, 172. https://doi.org/10.1051/e3sconf/202017217001
GARCÍA MORALES, S., LÓPEZ GONZÁLEZ, L. y COLLADO GÓMEZ, A. (2012). “Metodología de inspección higrotérmica para la determinación de un factor de intensidad de evaporación en edificios históricos”, Informes de la Construcción, 64: 69-78. https://doi.org/10.3989/ic.11.073
GIL-MUÑOZ, M.T. (2017). Análisis e interpretación de los datos de monitorización del lienzo 44-45 de la muralla de Ávila, tras su intervención para prevenir las humedades. Primer semestre de mediciones (Informe inédito). Ayuntamiento de Ávila.
HAUSCHILD, T. & MENKE, F. (1998). “Moisture measurement in masonry walls using a non-invasive reflectometer”, Electronics Letters, 34(25): 2413-2414. https://doi.org/10.1049/el:19981694
HEALY, W.M. (2003). “Moisture sensor technology – A summary of techniques for measuring moisture levels in building envelopes”, ASHRAE Transactions, 109(1): 232-242.
HOŁA, A., MATKOWSKI, Z. & HOŁA, J. (2017). “Analysis of the moisture content of masonry walls in historical buildings using the basement of a medieval town hall as an example”, Procedia Engineering, 172: 363-368. https://doi.org/10.1016/j.proeng.2017.02.041
KAATZE, U. & HUBNER, C. (2010). “Electromagnetic techniques for moisture content determination of materials”, Measurement Science and Technology, 21. https://doi.org/10.1088/0957-0233/21/8/082001
KRUS, M. (1996). Moisture transport and storage coefficients of porous mineral building materials. Theoretical principles and new test methods. Ph.D. Thesis, Fraunhofer Institute of Building Physics.
LA VANGUARDIA. (1/3/2020). “Las visitas a la muralla de Ávila aumentaron casi el 50 % en febrero”. La Vanguardia. https://www.lavanguardia.com. [consulta: 26/4/2021].
MARTÍNEZ GARRIDO, M.I., FORT GONZÁLEZ, R. y RUIZ GONZÁLEZ, M. (2015). Aportación de la monitorización mediante redes de sensores y técnicas no invasivas para la conservación preventiva del Patrimonio. Tesis doctoral, Universidad Politécnica de Madrid.
MCCANN, D.M. & FORDE, M.C. (2001). “Review of NDT methods in the assessment of concrete and masonry structures”, NDT&E International, 34(2): 71–84. https://doi.org/10.1016/S0963-8695(00)00032-3
MOLLO, L. y GRECO, G. (2011). “Moisture measurements in masonry materials by time domain reflectometry”, Journal of Materials in Civil Engineering, 23(4): 441-444. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000188
PAVLÍK, Z. & ČERNÝ, R. (2004). “Application of TDR measurement technology for construction materials in semi-scale experiments”, International Agrophysics, 18(3): 249-252.
PHILLIPSON, M.C., BAKER, P.H., DAVIES, M. et al. (2008). “Suitability of time domain reflectometry for monitoring moisture in building materials”, Building Services Engineering Research and Technology, 29(3): 261-272. https://doi.org/10.1177/0143624408092423
PHILLIPSON, M., BAKER, P., MCNAUGHTAN, A. et al. (2007). “Moisture measurement in building materials: An overview of current methods and new approaches”, Building Services Engineering Research and Technology, 28 (4): 303-316. https://doi.org/10.1177/0143624407084184
PINCHIN, S.E. (2008). “Techniques for monitoring moisture in walls”, Reviews in Conservation, 9: 33-45. https://doi.org/10.1179/sic.2008.53.Supplement-2.33
REGALADO, C.M., RITTER, A. y GARCÍA, O. (2009). “Caracterización de sensores electromagnéticos de humedad de suelo con fluidos estándar de permitividad conocida”. En Estudios de la Zona no Saturada del Suelo, Silva Rojas, O. y Carrera Ramírez, J. (eds.). Barcelona: CIMNE, 192-199.
RUIZ, R. y CABRERA, B. (2017). “Arqueología en la Muralla de Ávila: últimas aportaciones”, Cuadernos de arquitectura y fortificación, 4: 9-46.
SAÏD, A.N.M. (2007). “Measurement methods of moisture in building envelopes – A literature review”, International Journal of Architectural Heritage, 1: 293–310. https://doi.org/10.1080/15583050701476754
SANDROLINI, F. & Franzoni, E. (2006). “An operative protocol for reliable measurements of moisture in porous materials of ancient buildings”, Building and Environment, 41(10): 1372-1380. https://doi.org/10.1016/j.buildenv.2005.05.023
SUCHORAB, Z., SOBCZUK, H. & ŁAGÓD, G. (2016). “Estimation of building material moisture using non-invasive TDR sensors”. In AIP Conference Proceedings, 1752. https://doi.org/10.1063/1.4955231
TADA, S. & WATANABE, K. (1998). “An overview of principles and techniques of moisture properties measurement for building materials and components”, Workshop on mass-energy transfer and deterioration of building materials and components, Tsukuba, Japan.
TIANO, P. & RIMINESI, C. (2017). “State of arts of monumental stones diagnosis and monitoring”, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42: 665–671. https://doi.org/10.5194/isprs-archives-XLII-2-W5-665-2017
TORRES, M.I.M. & FREITAS, V.P. (2010). “The influence of the thickness of the walls and their properties on the treatment of rising damp in historic buildings”, Construction and Building Materials, 24: 1331-1339. https://doi.org/10.1016/j.conbuildmat.2010.01.004
VECCHIATTINI, R. (2018). “Moisture monitoring experience in the old town of Genoa (Italy)”, Journal of Cultural Heritage, 31S: 71-81. https://doi.org/10.1016/j.culher.2018.04.007
VOUTILAINEN, J. (2005). Methods and instrumentation for measuring moisture in building structures. Doctoral Thesis, Helsinki University of Technology, Applied Electronics Laboratory.
ZHAO, J.H., RIVERA, E., MUFTI, A. et al. (2012). “Evaluation of dielectric based and other methods for moisture content measurement in building stones”, Journal of Civil Structural Health Monitoring, 2: 137-148. https://doi.org/10.1007/s13349-012-0024-1
- Copyright and intellectual property belongs to author. Author guarantees editing and publishing rights to Ge-Conservación Journal, under a Creative Commons Attribution License. This license allows others to share the work with authorship and the original source of publication acknowledgement.
- Articles can be used for scientific and educational purposes but never for commercial use, being sanctioned by law.
- The whole content of the article is author’s responsibility.
- Ge-Conservación Journal and authors may establish additional agreements for non-exclusive distribution of the work version published at the Journal (for example, on institutional repositories or on a book) with acknowledgment of the original publication on this Journal.
- Author is allowed and encouraged to disseminate his works electronically (for example, on institutional repositories or on its own website) after being published on Ge-Conservación Journal. This will contribute for fruitful interchanges as also for wider and earlier citations of the author’s works.
- Author’s personal data will only be used for the Journal purposes and will not be given to others.