Desvendar a arte da pintura mural de Almada Negreiros nas estações marítimas de Alcântara (Lisboa): Diagnóstico de camadas cromáticas como guia para sua conservação futura

Palavras-chave: Almada Negreiros, pinturas murais, diagnóstico, SEM-EDS, μ-XRD, µ-FT-IR, Py-GC/MS

Resumo

Este artigo relata uma pesquisa de diagnóstico de camadas cromáticas deterioradas em três pinturas murais pintadas por Almada na Estação Marítima de Alcântara, em Lisboa. O objetivo foi o entendimento dos principais fenómenos de deterioração como apoio a futuros trabalhos de conservação. A configuração analítica foi composta por afotografia técnica no Vis, Vis-Ras e UVF, p-OM e h-EDXRF; micro-amostragem; OM, SEM-EDS, μ-XRD, μ-Raman, FT-IR e Py-GC/MS. Os primeiros resultados mostram que todas as camadas cromáticas analisadas estão afectadas por sais (sulfatos) que ao longo do tempo tem causado perdas de adesão e de coesão, erosão e lacunas. As camadas cromáticas verdes-claras/verde-claras azuladas presente em todos os painéis são as mais atingidas. Aglutinantes não foram identificados, mas somente a presença de polímeros vinílicos nas superfícies pintadas com brilho.

Downloads

Não há dados estatísticos.

Biografias Autor

Milene Gil, HERCULES Laboratory (University of Évora), Portugal

Milene Gil is a conservator restorer of Mural paintings and a researcher of Conservation Science at HERCULES Laboratory (Evora University). She has completed her PhD in 2010 in Conservation and restoration of Cultural Heritage, field of expertise Theory, History and Techniques of Artistic Production. She is the PI of the project Unveiling the Mural Art of Almada Negreiros PTDC/ART-HIS/1370/2020.

Mafalda Costa, HERCULES Laboratory (University of Évora), Portugal

Mafalda Costa is a geologist and a researcher in the HERCULES Laboratory (University of Évora). Since 2014, she has been working in the field of archaeometry, using analytical techniques to determine the chemical and mineralogical composition of a wide range of inorganic materials recovered from Cultural Heritage contexts.

Mila Cvetkovic, HERCULES Laboratory (University of Évora), Portugal

Mila Cvetković finished architecture studies at the Faculty of Civil Engineering and Architecture in Niš, Serbia. She holds master degrees in architecture (class 2016/17, GAF, University of Niš) and in archaeological materials science (ArchMat, class 2018/20). She is a PhD candidate and a former teaching associate at the Faculty of Civil Engineering and Architecture.

Carlo Bottaini, HERCULES Laboratory (University of Évora), Portugal

Carlo Bottaini is an archaeologist. He completed his PhD at the University of Coimbra (Portugal) in 2013. He is currently researcher at the HERCULES Lab, and he is a member of the CityUMacau Chair in Sustainable Heritage (University of Évora). Much of his research is concerned with exploring the dynamics of societal change in later prehistory of Western Europe and Mediterranean through the analysis of material culture and technologies.

Ana Margarida Cardoso, HERCULES Laboratory (University of Évora), Portugal

Ana Margarida Cardoso has a master’s degree in Materials Engineering. She held an internship at the Institute of Museums and Conservation in the Laboratory José de Figueiredo (LJF) under the Internship Program in Public Administration in 2006. Since then has collaborated on several projects funded by FCT in Portugal, at the LJF and HERCULES Laboratory, with special focus on materials characterization through vibrational spectroscopy and microscopic techniques. She works as a higher technician and she is a PhD student in chemistry at the University of Évora.

Ana Manhita, HERCULES Laboratory (University of Évora), Portugal

Ana Manhita is a Chemist and Assistant Researcher at HERCULES Laboratory, University of Évora, Portugal. She completed her PhD in Chemistry in 2012, focused on the material study of historical textiles. She mainly develops her research in the field of analytical chemistry applied to the study of cultural heritage objects, with special emphasis on the application of advanced chromatographic techniques for the study of organic materials.

Cristina Barrocas Dias, HERCULES Laboratory (University of Évora), Portugal

Cristina Barrocas Dias is an Associate Professor and Deputy-Director of the HERCULES Laboratory, University of Évora. Her research expertise is the analysis of organic compounds by hyphenated chromatographic methods (LC-MS and GC-MS). Recently she has expanded her interests into the analysis of stable isotopes applied to cultural heritage.

António Candeias, Director of the Institute for Research and Advanced Training of the University of Evora, Portugal

Antonio Candeias is a Chemist specialized in surface chemistry and heritage science. Professor at the University of Évora since 1992, he was director of the HERCULES Laboratory from its creation in January 2009 until February 2019. He is currently Vice-Rector for Research and Development and, Director of the Institute for Research and Advanced Training of the University of Evora, Director of the national infrastructure ERIHS.pt (Portuguese platform of the European Infrastructure in Heritage Sciences) and Chairperson of the CityUMacau Chair in “Sustainable Heritage”.

Referências

AZIMI, G.; PAPANGELAKIS, V. G. (2011). Mechanism and kinetics of gypsum–anhydrite transformation in aqueous electrolyte solutions. Hydrometallurgy, 108(1-2), 122–129. https://doi.org/10.1016/j.hydromet.2011.03.007

CHAROLA, A. E.; BLÄUER, C. (2015). Salts in Masonry: An Overview of the Problem. Restoration of Buildings and Monuments, pp. 119-135. https://doi.org/10.1515/rbm-2015-1005

COCCATO, A.; BERSANI, D.; COUDRAY, A.; SANYOVA, J.; MOENS, L.; VANDENABEELE, P. (2016). Raman spectroscopy of green minerals and reaction products with an application in Cultural Heritage research. Journal of Raman Spectroscopy, 47, 1429–1443. https://doi.org/10.1002/jrs.4956

CORTEA, I. M. et al. (2020). Uncovering hidden jewels: an investigation of the pictorial layers of an 18th-century Taskin harpsichord. Heritage Science, 8(55). https://doi.org/10.1186/s40494-020-00401-3

DRIEL, B. A. V., VAN DEN BERG, K. J., GERRETZEN, J.; DIK, J. (2016). The white of the 20th century: an explorative survey into Dutch modern art collections. Heritage Science, 6(16). https://doi.org/10.1186/s40494-018-0183-4

EL-GOHARY, M. (2008). Air Pollution and Aspects of Stone Degradation ‘’Umayyed Liwân - Amman Citadel as a Case Study’’. Journal of Applied Science Research, 4(6), pp. 669-682.

EL-GOHARY, M. (2011). Chemical deterioration of Egyptian limestone affected by saline water. International Journal of Conservation Science, 2(1), pp. 17-28.

EASTAUGH N.; WALSH V.; CHAPLIN T.; SIDDALL R. (2004). The pigment compendium: a dictionary of historical pigments. Elsevier Butterworth-Heinemann.

FIEDLER I.; BAYARD M. (1986). Cadmium yellows, oranges, and reds In Artists´ Pigments: A Handbook of Their History and Characteristics, Volume 1. s.l.: (Editor) Feller, R. L., National Gallery of Art, Washington, Archetype Publications, London, pp.65-109.

FIGUEIREDO, C. et al. (2019). Natural cement in Portuguese heritage buildings. Lisbon: s.n.

FIEDLER I.; BAYARD M. (1997). Emarald green and Scheele’s Green In Artists´ Pigments: A Handbook of Their History and Characteristics, Volume 3. s.l.: (Editor) Fitzhugh E. W., National Gallery of Art, Washington, Archetype Publications, London, pp. 219-273.

FRANÇA, J.A. (2004). História da arte em Portugal. 6. O Modernismo: (século XX), s.l.:Presença.

FRANÇA, J.A. (2014). Glórias de almada. Lisbon: Lisbon: Instituto de História da Arte.

GIL, M. et al. (2007). Yellow and red ochre pigments from southern Portugal: Elemental composition and characterization by WDXRF and XRD. Nuclear Instruments and Methods in Physics Research A, Issue 580, pp. 728-731. https://doi.org/10.1016/j.nima.2007.05.131

HANAFI, M. H. et al. (2018). An Introduction to Thermal Bridge Assessment and Mold Risk at Dampness Surface for Heritage Building. IOP International Conference on Materials Engineering and Science.

JEDIDI, M.; BENJEDDOU, O. (2018). Effect of Thermal Bridges on the Heat Balance of Buildings. International Journal of Scientific Research in Civil Engineering, 2(5), pp. 41-49.

LÄHTEENMÄKI, L. (2009). Combinations of titanium dioxide and fillers in paints. Degree Program in Chemical Engineering.

LOBO, P. R. (2014). Almada and the Maritime Stations: The portrait of Portugal that the dictatorship wanted to erase. Revista de História da Arte, Volume 2, pp. 342-352.

MADARIAGA, J. M.; MAGUREGUI, M.; DE VALLEJUELO, S. F. O.; KNUUTINEN, U.; CASTRO, K.; MARTINEZ-ARKARAZO, I.; GIAKOUMAKIA, A.; PITARCH, A. (2014). In situ analysis with portable Raman and ED-XRF spectrometers for the diagnosis of the formation of efflorescence on walls and wall paintings of the Insula IX 3 (Pompeii, Italy). Journal of Raman Spectroscopy, 45(11-12), 1059–1067. https://doi.org/10.1002/jrs.4611

MARSZAŁEK, M.; DUDEK, K.; GAWEŁ, A. (2020). Cement Render and Mortar and Their Damages Due to Salt Crystallization in the Holy Trinity Church, Dominicans Monastery in Cracow, Poland. Minerals, Volume 641, p. 10. https://doi.org/10.3390/min10070641

MONTEIRO, J. P. (2012). Dissertação para Obtenção do grau Doutor en Design: Para o projecto global - nove décadas de obra: Arte, Design e Técnica na Arquitetura do atelier Pardal Monteiro. s.l.: Lisboa: Universidade Técnica de Lisboa, Faculdade de Arquitetura.

PAVÍA, S. (2008). Sulfation of a decrepit Portland cement mortar and its adjacent masonry. In: SWBSS- Salt Weathering on Buildings and Stone Sculptures. Copenhagen: Technical University of Denmark.

PERIS-VICENTE, J. et al. (2009). Characterization of Commercial Synthetic Resins by Pyrolysis-Gas Chromatography/Mass Spectrometry: Application to Modern Art and Conservation. Analytical Chemistry, Volume 81, pp. 3180-3187. https://doi.org/10.1021/ac900149p

PLASTER J, A. (1993). Ultramarine Blue natural and artificial In Artists´ Pigments: A Handbook of Their History and Characteristics, Volume 2. s.l.: (Editor) Ashok Roy, National Gallery of Art, Washington, Archetype Publications, London, pp.37-67.

SALVADORI, B.; ERRICO, V.; MAURO, M.; MELNIK, E.; DEI, L. (2003). Evaluation of Gypsum and Calcium Oxalates in Deteriorated Mural Paintings by Quantitative FTIR Spectroscopy, Spectroscopy Letters, 36:5-6, 501-513, https://doi.org/10.1081/SL-120026615

SCHOSSLER, P.; FORTES, I.; CURA D’ARS DE FIGUEIREDO JÚNIOR; ANTÔNIO CRUZ SOUZA, L. (2013). Acrylic and Vinyl Resins Identified by Pyrolysis-Gas Chromatography/Mass Spectrometry: A Study of Cases in Modern Art Conservation. Analytical Letters, 46(12), pp. 1869-1884. https://doi.org/10.1080/00032719.2013.777925

SONG, J.; PENG, P. (2010). Characterisation of black carbon materials by pyrolysis-gas chromatography-mass spectrometry. Journal of Analytical and Applied Pyrolysis, Issue 87, pp. 129-137. https://doi.org/10.1016/j.jaap.2009.11.003

YOUNG, D. (2008). Salt attack and rising damp: A guide to salt damp in historic and older buildings. Heritage Council of NSW, Heritage Vistoria, South Australian Department for Environment and Heritage, Adelaide City Council.

ZEDAN, M. F.; AL-SANEA, S.; AL-MUJAHID, A.; AL-SUHAIBANI, Z. (2016). Effect of Thermal Bridges in Insulated Walls on Air-Conditioning Loads Using Whole Building Energy Analysis. Sustainability, 8(560). https://doi.org/10.3390/su8060560

Publicado
2021-10-25
Como Citar
Gil, M., Costa, M., Cvetkovic, M., Bottaini, C., Cardoso, A. M., Manhita, A., Barrocas Dias, C., & Candeias, A. (2021). Desvendar a arte da pintura mural de Almada Negreiros nas estações marítimas de Alcântara (Lisboa): Diagnóstico de camadas cromáticas como guia para sua conservação futura. Ge-Conservacion, 20(1), 105-117. https://doi.org/10.37558/gec.v20i1.1027
Secção
Artículos