Precipitación de carbonatos inducida microbiológicamente como potencial estrategia en la restauración de estructuras patrimoniales
Resumo
En los últimos años, la precipitación de carbonatos inducida microbiológicamente ha demostrado ser una potencial herramienta de restauración de piezas arquitectónicas y esculturas alrededor del mundo con buenos resultados a corto y largo plazo. En este trabajo se realizaron incubaciones partiendo de cepas bacterianas locales de Bacillus subtilis previamente aisladas e identificadas para comprobar la capacidad de estas cepas bacterianas en la producción de carbonato de calcio sobre muestras de roca carbonática. Los cristales obtenidos fueron analizados a través de FT-IR, SEM-EDS y DRX. Los resultados muestran la formación de películas estables de bioprecipitado de calcita, el polimorfo más estable de carbonato de calcio, sobre las muestras de rocas demostrando así la posibilidad de utilizar cepas no patogénicas y medios económicos para restaurar, prevenir o disminuir el futuro deterioro del patrimonio cultural.
Downloads
Referências
AL-THAWADI, S. M. (2011). ‘Ureolytic bacteria and calcium carbonate formation as a mechanism of strength enhancement of sand’, Journal of Advanced Science and Engineering Research, 1. Available at: https://www.sign-ific-ance.co.uk/dsr/index.php/JASER/article/view/26.
ALLEN, T. (no date) Serial Dilution Problem # 1. Available at: https://www.uvm.edu/~btessman/calc/serhelp.html.
ANDREOLLI, M. et al. (2020). ‘Bacteria from black crusts on stone monuments can precipitate CaCO3 allowing the development of a new bio-consolidation protocol for ornamental stone’, International Biodeterioration & Biodegradation, 153. https://doi.org/10.1016/j.ibiod.2020.105031.
AWAIS, M. et al. (2007). ‘Isolation, identification and optimization of bacitracin produced by Bacillus SP.’, Pakistan Journal of Botany, 39(4): 1303–1312.
BANG, S. S., GALINAT, J. K. AND RAMAKRISHNAN, V. (2001). ‘Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii’, Enzyme and Microbial Technology, 28(4–5): 404–409. https://doi.org/10.1016/S0141-0229(00)00348-3.
CAMAITI, M., BORSELLI, G. AND MATTEOLI, U. (1988). La conservazione del patrimonio monumentale: Prodotti consolidanti impiegati nelle operazioni de restauro. 10th edn. Edited by s.e. s.l.: L’edilizia e l’ industrializazzione.
CARRIÓ, V. AND MARCOS, F. (2013). ‘Pros and Cons of Restoration’, 22nd Symposium for Palaeontological Preparation and Conservation Geological Curators’ Group, (November), 12. https://doi.org/10.13140/RG.2.2.19704.75526.
CHAPARRO-ACUÑA, S. P. et al. (2018) ‘Soil bacteria that precipitate calcium carbonate: Mechanism and applications of the process’, Acta Agronomica, 67(2). https://doi.org/10.15446/acag.v67n2.66109.
CHOI, S.-G. et al. (2020) ‘Review on geotechnical engineering properties of sands treated by microbially induced calcium carbonate precipitation (MICP) and biopolymers’, Construction and Building Materials, 246(118415). https://doi.org/10.1016/j.conbuildmat.2020.118415.
DASKALAKIS, M. I. et al. (2013) ‘Pseudomonas , Pantoea and Cupriavidus isolates induce calcium carbonate precipitation for biorestoration of ornamental stone’, Journal of Applied Microbiology, 115(2): 409–423. https://doi.org/10.1111/jam.12234.
DICK, J. et al. (2006) ‘Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species’, Biodegradation, 17(4): 357–367. https://doi.org/10.1007/s10532-005-9006-x.
GARCÍA-GONZÁLEZ, J. et al. (2017) ‘Quality improvement of mixed and ceramic recycled aggregates by biodeposition of calcium carbonate’, Construction and Building Materials, 154: 1015–1023. https://doi.org/10.1016/j.conbuildmat.2017.08.039.
GIORGI, R. et al. (2010) ‘New Methodologies for the conservation of cultural heritage: Micellar solutions, microemulsions, and hydroxide nanoparticles’, Accounts of Chemical Research, 43(6): 2. https://doi.org/10.1021/ar900193h.
Jokilehto, J. (2005) ‘Definition of cultural heritage: references to documents in history’, ICCROM Working Group ‘Heritage and Society’, (January), 4–8.
JOSEPH, E. (ed.) (2021) Microorganisms in the Deterioration and Preservation of Cultural Heritage. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-69411-1.
MÁRCIA AIKO, J. S. et al. (2011) ‘Effect of culture medium on biocalcification by pseudomona putida, lysinibacillus sphaericus and bacillus subtilis’, Brazilian Journal of Microbiology, 42(1517–8382).
LE MÉTAYER-LEVREL, G. et al. (1999). ‘Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony’, Sedimentary Geology, 126(1–4): 25–34. https://doi.org/10.1016/S0037-0738(99)00029-9.
MICALLEF, R. et al. (2016). ‘Biocalcifying Bacillus subtilis cells effectively consolidate deteriorated Globigerina limestone’, Journal of Industrial Microbiology and Biotechnology, 43(7): 941–952. https://doi.org/10.1007/s10295-016-1768-0.
DE MUYNCK, W. et al. (2011). ‘Influence of pore structure on the effectiveness of a biogenic carbonate surface treatment for limestone conservation’, Applied and Environmental Microbiology, 77(19: 6808–6820. https://doi.org/10.1128/AEM.00219-11.
ORTEGA-MORALES, B. O. AND GAYLARDE, C. C. (2021). ‘Bioconservation of Historic Stone Buildings—An Updated Review’, Applied Sciences, 11(12): 5695. https://doi.org/10.3390/app11125695.
ORTEGA-VILLAMAGUA, E., GUDIÑO-GOMEZJURADO, M. AND PALMA-CANDO, A. (2020). ‘Microbiologically Induced Carbonate Precipitation in the Restoration and Conservation of Cultural Heritage Materials’, Molecules, 25(23): 3–6. https://doi.org/10.3390/app1112569510.3390/molecules25235499.
PERALTA, E. AND MOYA, R. (2007). Quito: Patrimonio Cultural de la Humanidad. Maxigraf S.A.
PÉREZ, H. F. AND GARCÍA, M. G. (2020). ‘Bioprecipitation of calcium carbonate by Bacillus subtilis and its potential to self-healing in cement-based materials’, Journal of Applied Research and Technology, 18(5). https://doi.org/10.22201/icat.24486736e.2020.18.5.1280.
PIGGOT, P. J. (2009). ‘Bacillus Subtilis’, in Encyclopedia of Microbiology. 45–56. https://doi.org/10.1016/B978-012373944-5.00036-5.
SLEPECKY, R. A. AND HEMPHILL, E. H. (2006). The Genus Bacillus-Nonmedical. https://doi.org/10.1007/0-387-30744-3.
SOFFRITTI et al. (2019). ‘The Potential Use of Microorganisms as Restorative Agents: An Update’, Sustainability, 11(14). https://doi.org/10.3390/su11143853.
STEINBERG, D. et al. (2016). ‘Bacillus subtilis manual’, Molecular Microbiology, 1012–1025. https://doi.org/10.1111/j.1365-2958.2008.06467.x.
ZHENG, T. AND QIAN, C. (2020) ‘Influencing factors and formation mechanism of CaCO3 precipitation induced by microbial carbonic anhydrase’, Process Biochemistry, 91: 271–281. https://doi.org/10.1016/j.procbio.2019.12.018.
Os autores conservam os direitos de autor e de propriedade intelectual e garantem à revista Ge-Conservación o direito de edição e publicação do trabalho, sob a Creative Commons Attribution License. Este permite a partilha do trabalho, por outros, com o reconhecimento da autoria do trabalho e da publicação inicial nesta revista.
Os artigos podem ser utilizados para fins científicos e formativos, mas nunca com fins comerciais, expressamente, sancionados por Lei.
A informação existente nos artigos é da exclusiva responsabilidade dos autores.
A revista Ge-Conservación e os autores podem estabelecer, em separado, acordos adicionais para a distribuição não exclusiva da versão da obra publicada na revista (por exemplo, colocá-la num repositório institucional ou publicá-la em livro), com o reconhecimento da sua publicação inicial nesta revista.
É permitido e incentivado aos autores difundirem os seus trabalhos, electronicamente (por exemplo, em repositórios institucionais ou no seu próprio site) depois da sua publicação na revista Ge-Conservación, já que pode dar lugar a intercâmbios produtivos, assim como a citações mais amplas e mais cedo dos trabalhos publicados pelo autor.
Os dados pessoais fornecidos pelos autores são utilizados, unicamente, para os fins da revista e não serão proporcionados a terceiros.