Nanostructured materials in interventions for rehabilitation of Architectural Heritage
Abstract
This article aims to contribute and stimulate the introduction of nanostructured materials in the rehabilitation interventions, enabling the execution of new plasters with photocatalytic properties conferred by the addition of TiO2 nanoparticles in the mortar matrix, among which are self - cleaning and decontamination environmental. The addition of carbon nanotubes in mortars and the formation of concrete allows the fabrication of coatings of improved mechanical performance as well as smaller structural parts, providing a minimal and intrusive intervention, ensuring a faster execution time.
To seek solutions to pathologies in architectural heritage, aiming to mitigate the harmful effects to the environment caused by the exposure to the polluting gases - NOx, CO2 and to the volatile organic compounds - VOCs, resulting, consequently, in accelerating degradation of facades of buildings, in a model more sustainable, will be the great challenge of architects and other specialists involved.
Downloads
References
CARNEIRO, J. et al (2013). Utilização de nanopartículas de TIO2 para o desenvolvimento de pavimentos rodoviários com capacidade fotocatalítica. http://repositorium.sdum.uminho.pt/bitstream/1822/26160/1/Após%20revisão _JCar_EF_artigo_7CRP-1.pdf [consulta: 20/05/2019].
CHEN, D. et al (2007). Photocatalytic coating on road – pavements/structures for NOx abatement. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.604.5945&rep=repy1&type=pdf.[consulta: 15/11/2018].
COSTA, J. et al (2016). Materiais nanoestruturados para aplicação em edifícios históricos. https://www.researchgate.net/publication/309718395_Materiais_nanoestruturados_para_aplicacao_em_edificios_historicos/download. [consulta: 20/05/2019].
CRISTINA, I. et al. (2014). Responsabilidade civil e nanotecnologias. S. Paulo: Editora Atlas S.A.
FRANCO, C. (2018). “Nano materiais na reabilitação de património arquitetónico”, em Tullio, F. & Tullio, L. (Eds). (2018). Gestão de Projetos Sustentáveis, v. 1. Ponta Grossa: Atena Editora. https://www.atenaeditora.com.br/wp-content/uploads/2018/10/E-book-Gestão-de-Projetos-Sustentáveis.pdf [consulta: 18/11/2018].
FUJISHIMA, A. et al (2014). Superhydrophobic Surfaces Developed by Mimicking Hierarchical Surface Morphology of Lotus Leaf In Molecules, 19(4), 4256-4283. https://doi.org/10.3390/molecules19044256. [consulta: 15/11/2018].
FUJISHIMA A. et al (2008). “TiO2 photocatalysis and related surface phenomena”, em Surface Science Reports, 63 (15), 515-582 https://www.sciencedirect.com/science/article/abs/pii/S0167572908000757?via%3Dihub.[consulta: 14/07/2018].
GOMES, M. (2014), Materiais de Construção Sustentáveis, in Obras Públicas Sustentáveis, 2, 523-531. http://repositorium.sdum.uminho.pt/handle/1822/31159.[consulta: 30/08/2015].
GONÇALVES, M. & MARGARIDO, F. (2012). Ciência e Engenharia de Materiais de Construção. Lisboa: IST Press.
HEBEL, D. & HEISEL, F. (2017). Cultivated building materials. Industrialized natural resources for architecture and construction. Basel: Birkhauser.
JOSÉ, N. & PRADO, L. (2005). “Materiais Híbridos Orgânico-Inorgânicos: Preparação e Algumas Aplicações”, em Química Nova, 28 ( 2), 281-288. http://www.scielo.br/pdf/qn/v28n2/23651.pdf. [consulta: 18/11/2018].
KHALID M., RATNAM C.T., WALVEKAR R., KETABCHI M.R., HOQUE M.E. (2017). “Reinforced Natural Rubber Nanocomposites: Next Generation Advanced Material”. Em JAWAID M., SALIT M., ALOTHMAN O. (eds) Green Biocomposites. Green Energy and Technology. Springer, Cham. DOI https://doi.org/10.1007/978-3-319-49382-4_14. [consulta: 18/11/2018 ]
LIMA, E. (2014). Nanotecnologia: biotecnologia e novas ciências. Rio de Janeiro: Editora Interciência Ltda.
LOOS, M. (2014). Nanociência e nanotecnologia: compósitos termofixos reforçados com nanotubos de carbono. Rio de Janeiro: Editora Interciência Ltda.
LUCAS, S. et al (2014). Novos materiais de construção com tecnologias avançadas. Materiais de Construção Sustentáveis, 1, 71-77. http://repositorium.sdum.uminho.pt/handle/1822/31367. [consulta: 18/11/2018].
MASS, W. et al. (2015). Barba - Live in the Fully Adaptable Environment. Amesterdam: The Why Factory.
NETO, O. y PACHECO, M. et al. (2012). Nanotecnologia computacional inteligente: concebendo a engenharia em nanotecnologia. Rio de Janeiro: Editora Interciência Ltda.
NETO, E. et al (2014). Efeitos da proteção antigraffiti na durabilidade do betão. Materiais de Construção Sustentáveis, 2, 449-459. http://repositorium.sdum.uminho.pt/handle/1822/31159. [consulta: 30/08/2015].
OHAMA, Y. y GEMERT, D. (Eds). (2011). Application of Titanium Dioxide Photocatalysis to Construction Materials. Yokoama: Springer.
PAPPALARDO, J. et al (2014). Estudo sobre vigas de betão armado reforçadas com tecidos de fibra, Materiais de Construção Sustentáveis, 2, 709-719. http://repositorium.sdum.uminho.pt/handle/1822/31159.[consulta: 30/08/2015].
PARAMÉS, J. y, BRITO, J. (2010). Materiais de construção nanotecnológicos de auto-limpeza, disponível em Teoria e Prática na Engenharia Civil, 15, 55-62. http://www.editoradunas.com.br/revistatpec/Art6_N15.pdf. [consulta: 30-08-2015].
PETERS, S. (2014). Material revolution II – New sustainable and multi-purpose materials for design and architecture. Basel: Birkhauser.
RÓZ, A. et al. (2015a). Técnicas de nanocaracteriação: princípios e aplicações. Rio de Janeiro: Elsevier Editora Ltda v1.
RÓZ, A. et al. (2015b). Nanoestruturas: princípios e aplicações. Rio de Janeiro: Elsevier Editora Ltda v2.
SANTOS, A. et al (2018). Design para a Sustentabilidade: Dimensão Ambiental. Curitiba: Editora Insight.
SASCHA, P. (2014). Material Revolution II – New sustainable and multi-purpose materials design and architecture. Basel: Birkhãuser,
SCHROPFER, T. (2011). Material Design – Informing Architecture by Materiality. Basel: Birkhãuser.
T
HE BRITISH MUSEUM (2019). The Lycurgus Cup. https://www.britishmuseum.org/research/collection_online/collection_object_details/collection_image_gallery.aspx?partid=1&assetid=1066991001&objectid=61219. [Consulta: 11-11-2018].
THE ROYAL SOCIETY (2003). Nanotechnology and Nanoscience. http://www.nanotec.org.uk/finalReport.htm. [consulta: 04-12-2018].
TORGAL, F. (2010). Considerações sobre a sustentabilidade dos materiais de construção. http://repositorium.sdum.uminho.pt/bitstream/1822/13957/1/CM_Materiais_2010.pdf, [consulta:30/08/2015].TORGAL, F & JALALI, S. (2010). A sustentabilidade dos Materiais de Construção. Vila Verde: Universidade do Minho.
TOMA, H. (2016). Nanotecnologia Molecular – Materiais e dispositivos. S. Paulo: Blucher.
TOMA, H. et al. (2016). Nanotecnologia experimental. S. Paulo: Blucher.
- Copyright and intellectual property belongs to author. Author guarantees editing and publishing rights to Ge-Conservación Journal, under a Creative Commons Attribution License. This license allows others to share the work with authorship and the original source of publication acknowledgement.
- Articles can be used for scientific and educational purposes but never for commercial use, being sanctioned by law.
- The whole content of the article is author’s responsibility.
- Ge-Conservación Journal and authors may establish additional agreements for non-exclusive distribution of the work version published at the Journal (for example, on institutional repositories or on a book) with acknowledgment of the original publication on this Journal.
- Author is allowed and encouraged to disseminate his works electronically (for example, on institutional repositories or on its own website) after being published on Ge-Conservación Journal. This will contribute for fruitful interchanges as also for wider and earlier citations of the author’s works.
- Author’s personal data will only be used for the Journal purposes and will not be given to others.