Review of satellite resources to assess environmental threats in rammed earth fortifications

Keywords: vulnerability, fortifications, hazards, rammed earth, remote sensing products

Abstract

The nature of rammed earth fortifications and the environmental conditions where they are located determine the pathologies that these structures suffer in the presence of humidity sources and strong winds. The objective of this project is to revise the main mechanisms of deterioration of rammed earth fortifications and evaluate the use of remote detection as a tool to register environmental threats that affect their preservation. The selected images and satellite results offer information about precipitation, ground humidity, temperature, wind intensity and direction and the presence of particles in the wind. The use of statistical analysis methodologies for large volumes of satellite images makes it possible to acquire daily, monthly and yearly maximums, averages and minimums of these variables. The application of satellite resources GPM, SMAP, MODIS, Merra-2 and the statistical analysis of large volumes of images for preventive conservation in Andalusia has become useful to monitor the main threats that affect rammed earth fortifications on a global level: humidity, wind and temperature.

Downloads

Download data is not yet available.

Author Biographies

Mónica Moreno Falcón, Pablo de Olavide University

Degree in History and Master in Diagnosis of the state of conservation of historical heritage. She has also a master in TIG: Geographic information systems and remote sensing, and she is currently a doctoral student. She belongs to the research group of the Junta de Andalucía Heritage, Technology and Environment. Her research activity is focused on the use of GIS and remote sensing to assess risks and vulnerability in Heritage landscapes. As a professional, she currently works at the SanitArte laboratory at Pablo de Olavide University.

Rocío Ortiz Calderón, Pablo de Olavide University

Degree in Architecture and Master in Protection of Historical Heritage. In 2014, she obtained the title of Doctor with European mention at Pablo de Olavide University (Seville, Spain). She is currently a professor at the UPO, director of the Master's Degree in Diagnosis of the State of Conservation of Historical Heritage and head of the Crystallography and Mineralogy Area of the same university. Dr. Ortiz's interests focus on studies of risk and vulnerability of Cultural Heritage, the use of georeferenced information for the study of Cultural Heritage, construction materials, urban planning plans and hazards, and innovation in science teaching with special emphasis on the diagnosis of Historical Heritage.

Pilar Ortiz Caderón, Pablo de Olavide University

Doctor in Chemistry, professor in the Master of Diagnosis of the State of Conservation of Historical Heritage, Dean of the Faculty of Experimental Sciences of Pablo de Olavide University (Seville, Spain) and head of the research group of the Junta de Andalucía Heritage, Technology and Environment. The lines of research he directs are based on studies on risks and vulnerability of historical heritage, preventive conservation, non-destructive techniques and new technologies applied to the diagnosis of materials of artistic historical interest.

References

ABATE, N., & LASAPONARA, R. (2019). Preventive archaeology based on open remote sensing data and tools: The cases of Sant’Arsenio (SA) and Foggia (FG), Italy. Sustainability (Switzerland), 11(15). https://doi.org/10.3390/su11154145

AGAPIOU, A. (2017). Remote sensing heritage in a petabyte-scale: satellite data and heritage Earth Engine© applications. International Journal of Digital Earth, 10(1), 85–102. https://doi.org/10.1080/17538947.2016.1250829

AGAPIOU, A., & LYSANDROU, V. (2021). Observing thermal conditions of historic buildings through earth observation data and big data engine. Sensors, 21(13). https://doi.org/10.3390/S21134557

AGAPIOU, A., LYSANDROU, V., & HADJIMITSIS, D. G. (2020). Earth observation contribution to cultural heritage disaster risk management: Case study of eastern mediterranean open air archaeological monuments and sites. Remote Sensing, 12(8). https://doi.org/10.3390/RS12081330

ALAHACOON, N., & EDIRISINGHE, M. (2021). Spatial Variability of Rainfall Trends in Sri Lanka from 1989 to 2019 as an Indication of Climate Change. ISPRS International Journal of Geo-Information 2021, 10(2): 84. https://doi.org/10.3390/IJGI10020084

AONASHI, K., AWAKA, J., HIROSE, M., KOZU, T., KUBOTA, T., LIU, G., SHIGE, S., KIDA, S., SETO, S., TAKAHASHI, N., & TAKAYABU, Y. N. (2009). GSMaP Passive Microwave Precipitation Retrieval Algorithm : Algorithm Description and Validation. Journal of the Meteorological Society of Japan. Ser. II, 87A: 119–136. https://doi.org/10.2151/JMSJ.87A.119

ARRIGONI, A., BECKETT, C., CIANCIO, D., & DOTELLI, G. (2017). Life cycle analysis of environmental impact vs. durability of stabilised rammed earth. Construction and Building Materials, 142: 128–136. https://doi.org/10.1016/J.CONBUILDMAT.2017.03.066

ASHOURI, H., HSU, K. L., SOROOSHIAN, S., BRAITHWAITE, D. K., KNAPP, K. R., CECIL, L. D., NELSON, B. R., & PRAT, O. P. (2015a). PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. Bulletin of the American Meteorological Society, 96(1): 69–83. https://doi.org/10.1175/BAMS-D-13-00068.1

ASHOURI, H., HSU, K. L., SOROOSHIAN, S., BRAITHWAITE, D. K., KNAPP, K. R., CECIL, L. D., NELSON, B. R., & PRAT, O. P. (2015b). PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. Bulletin of the American Meteorological Society, 96(1): 69–83. https://doi.org/10.1175/BAMS-D-13-00068.1

ÁVILA, F., PUERTAS, E., & GALLEGO, R. (2021). Characterization of the mechanical and physical properties of unstabilized rammed earth: A review. Construction and Building Materials, 270, 121435. https://doi.org/10.1016/J.CONBUILDMAT.2020.121435

AVRAM, E., GUILLAUD, H., & HARDY, M. (2001). Characterization of Earthen Materials, in Terra Literature Review. An Overview of Research in Earthen Architecture Conservation.

AWANGE, J., & KIEMA, J. (2019). Fundamentals of Remote Sensing, 115–123. Springer, Cham. https://doi.org/10.1007/978-3-030-03017-9_7

BECKETT, C. T. S., JAQUIN, P. A., & MOREL, J. C. (2020). Weathering the storm: A framework to assess the resistance of earthen structures to water damage. Construction and Building Materials, 242, 118098. https://doi.org/10.1016/J.CONBUILDMAT.2020.118098

BISQUERT, M., SÁNCHEZ, J. M., & CASELLES, V. (2014). Modeling Fire Danger in Galicia and Asturias (Spain) from MODIS Images. Remote Sensing, 6(1): 540–554. https://doi.org/10.3390/RS6010540

BUI, Q. B., MOREL, J. C., VENKATARAMA REDDY, B. V., & GHAYAD, W. (2009). Durability of rammed earth walls exposed for 20 years to natural weathering. Building and Environment, 44(5): 912–919. https://doi.org/10.1016/J.BUILDENV.2008.07.001

BUI, QUOC BAO, MOREL, J. C., HANS, S., & WALKER, P. (2014a). Effect of moisture content on the mechanical characteristics of rammed earth. Construction and Building Materials, 54: 163–169. https://doi.org/10.1016/J.CONBUILDMAT.2013.12.067

BUI, QUOC BAO, MOREL, J. C., HANS, S., & WALKER, P. (2014b). Effect of moisture content on the mechanical characteristics of rammed earth. Construction and Building Materials, 54: 163–169. https://doi.org/10.1016/J.CONBUILDMAT.2013.12.067

CAI, J., ZHANG, Y., LI, Y., SAN LIANG, X., & JIANG, T. (2017). Analyzing the Characteristics of Soil Moisture Using GLDAS Data: A Case Study in Eastern China. Applied Sciences 7(6): 566. https://doi.org/10.3390/APP7060566

CANIVEL, J., & GRACIANI, A. (2012). Critical analysis of interventions in historical rammed-earth walls. Military buildings in the ancient Kingdom of Seville. In Mileto C., Vegas F., & Cristini V. (Eds.), Rammed Earth Conservation, Taylor & Francis Group, 289–295.

CANIVELL GARCÍA DE PAREDES, J. (2011). Metodología de diagnóstico y caracterización de fábricas históricas de tapia = Methodology for diagnosis and characterization of historical rammed-earth walls. https://dialnet.unirioja.es/servlet/tesis?codigo=24661&info=resumen&idioma=SPA

CHEN, F., LASAPONARA, R., & MASINI, N. (2017). An overview of satellite synthetic aperture radar remote sensing in archaeology: From site detection to monitoring. Journal of Cultural Heritage, 23: 5–11. https://doi.org/10.1016/J.CULHER.2015.05.003

CHEN, F., ZHOU, W., XU, H., PARCHARIDIS, I., LIN, H., & FANG, C. (2020). Space Technology Facilitates the Preventive Monitoring and Preservation of the Great Wall of the Ming Dynasty: A Comparative Study of the Qingtongxia and Zhangjiakou Sections in China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 5719–5729. https://doi.org/10.1109/JSTARS.2020.3023297

CHUVIECO, E. (2016). Fundamentals of satellite remote sensing: An environmental approach. https://books.google.es/books?hl=es&lr=&id=-nCmCwAAQBAJ&oi=fnd&pg=PP1&dq=CHUVIECO,+E.+y+HUETE,+A.+2016.+Fundamentals+of+satellite+remote+sensing,+Boca+Raton,+436+pp.&ots=H5bE48vBCx&sig=9xuUxZa-JG1ybjXzMtqsNkw6i0g

CHUVIECO, & EMILIO. (2007). Mirar desde el espacio o mirar hacia otro lado: tendencias en teledetección. In Documents d’Anàlisi Geogràfica (Issue 50). https://www.raco.cat/index.php/DocumentsAnalisi/article/view/86622

COOK, M., SCHOTT, J. R., MANDEL, J., & RAQUENO, N. (2014a). Development of an Operational Calibration Methodology for the Landsat Thermal Data Archive and Initial Testing of the Atmospheric Compensation Component of a Land Surface Temperature (LST) Product from the Archive. Remote Sensing 6(11): 11244–11266. https://doi.org/10.3390/RS61111244

COOK, M., SCHOTT, J. R., MANDEL, J., & RAQUENO, N. (2014b). Development of an Operational Calibration Methodology for the Landsat Thermal Data Archive and Initial Testing of the Atmospheric Compensation Component of a Land Surface Temperature (LST) Product from the Archive. Remote Sensing 6(11): 11244–11266. https://doi.org/10.3390/RS61111244

CORREIA, M., GUERRERO, L., & CROSBY, A. (2016). Technical Strategies for Conservation of Earthen Archaeological Architecture. 17(3): 224–256. https://doi.org/10.1080/13505033.2015.1129799

CUCA, B., & HADJIMITSIS, D. G. (2017). Space technology meets policy: An overview of Earth Observation sensors for monitoring of cultural landscapes within policy framework for Cultural Heritage. Journal of Archaeological Science: Reports, 14: 727–733. https://doi.org/10.1016/j.jasrep.2017.05.001

CUCCURULLO, A., GALLIPOLI, D., BRUNO, A. W., AUGARDE, C., HUGHES, P., & LA BORDERIE, C. (2021). A comparative study of the effects of particle grading and compaction effort on the strength and stiffness of earth building materials at different humidity levels. Construction and Building Materials, 306, 124770. https://doi.org/10.1016/J.CONBUILDMAT.2021.124770

ELFADALY, A., & LASAPONARA, R. (2019). On the use of satellite imagery and GIS tools to detect and characterize the urbanization around heritage sites: The case studies of the Catacombs of Mustafa Kamel in Alexandria, Egypt and the Aragonese Castle in Baia, Italy. Sustainability (Switzerland), 11(7). https://doi.org/10.3390/SU11072110

ELFADALY, A., WAFA, O., ABOUARAB, M. A. R., GUIDA, A., SPANU, P. G., & LASAPONARA, R. (2017). Geo-environmental estimation of land use changes and its effects on Egyptian temples at Luxor City. ISPRS International Journal of Geo-Information, 6(11). https://doi.org/10.3390/ijgi6110378

ENTEKHABI, D., NJOKU, E. G., O’NEILL, P. E., KELLOGG, K. H., CROW, W. T., EDELSTEIN, W. N., ENTIN, J. K., GOODMAN, S. D., JACKSON, T. J., JOHNSON, J., KIMBALL, J., PIEPMEIER, J. R., KOSTER, R. D., MARTIN, N., MCDONALD, K. C., MOGHADDAM, M., MORAN, S., REICHLE, R., SHI, J. C., … VAN ZYL, J. (2010). The soil moisture active passive (SMAP) mission. Proceedings of the IEEE, 98(5): 704–716. https://doi.org/10.1109/JPROC.2010.2043918

FALCÓN, M. M., & RUZ, R. D. (2020). PATRIMONIALIZACIÓN DE ARCHIVOS Y BIBLIOTECAS HISTÓRICOS UNIVERSITARIOS: EL CASO DE LA COLECCIÓN WORMALD DE LA UNIVERSIDAD DE TARAPACÁ. Revista de Historia Social y de Las Mentalidades, 24(2): 265–290. https://doi.org/10.35588/RHSM.V24I2.4251

FEDONIUK, M. A., KOVALCHUK, I. P., FESYUK, V. O., KIRCHUK, R. V., MERLENKO, I. M., & BONDARCHUK, S. P. (2021). Differences in the assessment of vegetation indexes in the EO-Browser and EOS landviewer services (on the example of Lutsk district lands). 20th International Conference Geoinformatics: Theoretical and Applied Aspects, 2021(1): 1–6. https://doi.org/10.3997/2214-4609.20215521134/CITE/REFWORKS

FUNK, C., PETERSON, P., LANDSFELD, M., PEDREROS, D., DATA, J. V.-S., & 2015, U. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Nature. Com. https://www.nature.com/articles/sdata201566).

GANDREAU, D., & DELBOY, L. (2012). World heritage inventory of earthen architecture, 2012 (Crat. UNESCO (ed.)). CRATerre-ENSAG.

GARCÍA-SORIANO, L., & MILETO, C. (2015). Intervention construction techniques in monumental rammed earth architecture in Spain through ministry archives (1980–2013). Building Materials, IV, 3–6.

GEER, A. J., BAORDO, F., BORMANN, N., CHAMBON, P., ENGLISH, S. J., KAZUMORI, M., LAWRENCE, H., LEAN, P., LONITZA, K., & LUPU, C. (2017). The growing impact of satellite observations sensitive to humidity, cloud and precipitation. Quarterly Journal of the Royal Meteorological Society, 143(709): 3189–3206. https://doi.org/10.1002/QJ.3172

GERARD, P., MAHDAD, M., ROBERT MCCORMACK, A., & FRANÇOIS, B. (2015). A unified failure criterion for unstabilized rammed earth materials upon varying relative humidity conditions. Construction and Building Materials, 95: 437–447. https://doi.org/10.1016/J.CONBUILDMAT.2015.07.100

GHANE EZABADIA, N., AJDAR, S., & JAMALI, A. A. (2021). Analysis of dust changes using satellite images in Giovanni NASA and Sentinel-5P in Google Earth Engine in western Iran. JOURNAL OF NATURE AND SPATIAL SCIENCES, 1(1): 17–26. https://doi.org/10.30495/jonass.2021.680327

GHAZAL, N. K. (2020). Monitoring dust storm using normalized difference dust index (NDDI) and brightness temperature variation in Simi arid areas over Iraq. Iraqi Journal of Physics, 18(45): 68–75. https://doi.org/10.30723/ijp.18.45.68-75

GIUFFRIDA, G., CAPONETTO, R., & NOCERA, F. (2019). Hygrothermal properties of raw earth materials: A literature review. In Sustainability (Switzerland) 11(19): 5342. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/su11195342

GOMES, M. I., GONÇALVES, T. D., & FARIA, P. (2014). Unstabilized rammed earth: Characterization of material collected from old constructions in south portugal and comparison to normative requirements. International Journal of Architectural Heritage, 8(2): 185–212. https://doi.org/10.1080/15583058.2012.683133

GORELICK, N., HANCHER, M., DIXON, M., ILYUSHCHENKO, S., THAU, D., & MOORE, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202: 18–27. https://doi.org/10.1016/j.rse.2017.06.031

GU, Y., BROWN, J. F., VERDIN, J. P., & WARDLOW, B. (2007). A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophysical Research Letters, 34(6): L06407. https://doi.org/10.1029/2006GL029127

GUTIÉRREZ-CARRILLO, M. L., GUERRERO DELGADO, MC. C., SÁNCHEZ RAMOS, J., ARCO DÍAZ, J., BESTUÉ CARDIEL, I., & ÁLVAREZ DOMÍNGUEZ, S. (2021). Mitigating damage on heritage structures by continuous conservation using thermal real-time monitoring. Case study of Ziri Wall, city of Granada, Spain. Journal of Cleaner Production, 296, 126522. https://doi.org/10.1016/J.JCLEPRO.2021.126522

HADJIMITSIS, D., AGAPIOU, A., ALEXAKIS, D., & SARRIS, A. (2013). Exploring natural and anthropogenic risk for cultural heritage in Cyprus using remote sensing and GIS. International Journal of Digital Earth, 6(2): 115–142. https://doi.org/10.1080/17538947.2011.602119

HADJIMITSIS, D. G., THEMISTOCLEOUS, K., CUCA, B., AGAPIOU, A., LYSANDROU, V., LASAPONARA, R., MASINI, N., & SCHREIER, G. (2020). Remote Sensing for Archaeology and Cultural Landscapes : Best Practices and Perspectives Across Europe and the Middle East (T. K. Cuca Branka, A. A. Lysandrou Vasiliki, L. R. Masini Nicola, & Schreier Gunter (eds.)). http://www.springer.com/series/10182

HAMARD, E., CAMMAS, C., FABBRI, A., RAZAKAMANANTSOA, A., CAZACLIU, B., & MOREL, J. C. (2016). Historical Rammed Earth Process Description Thanks to Micromorphological Analysis. Http://Dx.Doi.Org/10.1080/15583058.2016.1222462, 11(3): 314–323. https://doi.org/10.1080/15583058.2016.1222462

HAMARD, E., CAMMAS, C., LEMERCIER, B., CAZACLIU, B., & MOREL, J. C. (2020). Micromorphological description of vernacular cob process and comparison with rammed earth. Frontiers of Architectural Research, 9(1): 203–215. https://doi.org/10.1016/J.FOAR.2019.06.007

HART, S., RAYMOND, K., WILLIAMS, C. J., JOHNSON, J., DEGAYNER, J., & GUEBARD, M. C. (2021). Precipitation impacts on earthen architecture for better implementation of cultural resource management in the US Southwest. Heritage Science, 9(1): 1–18. https://doi.org/10.1186/s40494-021-00615-z

HERSBACH, H., BELL, B., BERRISFORD, P., HIRAHARA, S., HORÁNYI, A., MUÑOZ-SABATER, J., NICOLAS, J., PEUBEY, C., RADU, R., SCHEPERS, D., SIMMONS, A., SOCI, C., ABDALLA, S., ABELLAN, X., BALSAMO, G., BECHTOLD, P., BIAVATI, G., BIDLOT, J., BONAVITA, M., … THÉPAUT, J. N. (2020a). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730): 1999–2049. https://doi.org/10.1002/QJ.3803

HERSBACH, H., BELL, B., BERRISFORD, P., HIRAHARA, S., HORÁNYI, A., MUÑOZ-SABATER, J., NICOLAS, J., PEUBEY, C., RADU, R., SCHEPERS, D., SIMMONS, A., SOCI, C., ABDALLA, S., ABELLAN, X., BALSAMO, G., BECHTOLD, P., BIAVATI, G., BIDLOT, J., BONAVITA, M., … THÉPAUT, J. N. (2020b). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730): 1999–2049. https://doi.org/10.1002/QJ.3803

HSU, J., HUANG, W. R., LIU, P. Y., & LI, X. (2021). Validation of CHIRPS Precipitation Estimates over Taiwan at Multiple Timescales. Remote Sensing 13(2): 254. https://doi.org/10.3390/RS13020254

HUNTINGTON, J. L., HEGEWISCH, K. C., DAUDERT, B., MORTON, C. G., ABATZOGLOU, J. T., MCEVOY, D. J., & ERICKSON, T. (2017). Climate Engine: Cloud Computing and Visualization of Climate and Remote Sensing Data for Advanced Natural Resource Monitoring and Process Understanding. Bulletin of the American Meteorological Society, 98(11): 2397–2410. https://doi.org/10.1175/BAMS-D-15-00324.1

IADANZA, C., CACACE, C., DEL CONTE, S., SPIZZICHINO, D., CESPA, S., & TRIGILA, A. (2013). Cultural Heritage, Landslide Risk and Remote Sensing in Italy. Landslide Science and Practice: Risk Assessment, Management and Mitigation, 6: 491–499. https://doi.org/10.1007/978-3-642-31319-6_65

Instituto Andaluz del patrimonio Histórico [IAPH] (s.f) Guía Digital del Patrimonio Cultural de Andalucía https://guiadigital.iaph.es/

JAMALI, A. A., GHORBANI KALKHAJEH, R., RANDHIR, T. O., & HE, S. (2022). Modeling relationship between land surface temperature anomaly and environmental factors using GEE and Giovanni. Journal of Environmental Management, 302, 113970. https://doi.org/10.1016/J.JENVMAN.2021.113970

JAQUIN, P. A., AUGARDE, C. E., & GERRARD, C. M. (2008). Chronological Description of the Spatial Development of Rammed Earth Techniques. Http://Dx.Doi.Org/10.1080/15583050801958826, 2(4): 377–400. https://doi.org/10.1080/15583050801958826

JIMÉNEZ DELGADO, M. C., & GUERRERO, I. C. (2007). The selection of soils for unstabilised earth building: A normative review. In Construction and Building Materials 21(2): 237–251. Elsevier. https://doi.org/10.1016/j.conbuildmat.2005.08.006

KARIYAWASAM, K. K. G. K. D., & JAYASINGHE, C. (2016). Cement stabilized rammed earth as a sustainable construction material. Construction and Building Materials, 105: 519–527. https://doi.org/10.1016/J.CONBUILDMAT.2015.12.189

KIM, Y., VAN ZYL, J. J., CHARBONNEAU, F., TRUDEL, M., & FERNANDES, R. (2009). A Time-Series Approach to Estimate Soil Moisture Using Polarimetric Radar Data. IEEE Trans. Geosci. Remote Sens, 47: 15–17.

KOSTA, A., PARASKEVOPOULOS, I., AGAPIOU, A., BATTISTIN, F., SERPETTI, M., WALDOCH, F., RĄCZKOWSKI, W., IORIO, A. DI, ANGELI, S. DE, & HADJIMITSIS, D. (2020a). Remote sensing techniques for archaeology: a state of art analysis of SAR methods for land movement. Https://Doi.Org/10.1117/12.2571722, 11524: 105–119. https://doi.org/10.1117/12.2571722

KOSTA, A., PARASKEVOPOULOS, I., AGAPIOU, A., BATTISTIN, F., SERPETTI, M., WALDOCH, F., RĄCZKOWSKI, W., IORIO, A. DI, ANGELI, S. DE, & HADJIMITSIS, D. (2020b). Remote sensing techniques for archaeology: a state of art analysis of SAR methods for land movement. Https://Doi.Org/10.1117/12.2571722, 11524: 105–119. https://doi.org/10.1117/12.2571722

KUBOTA, T., AONASHI, K., USHIO, T., SHIGE, S., TAKAYABU, Y. N., ARAI, Y., TASHIMA, T., KACHI, M., & OKI, R. (2017). Recent progress in global satellite mapping of precipitation (GSMAP) product. International Geoscience and Remote Sensing Symposium (IGARSS), 2017-July, 2712–2715. https://doi.org/10.1109/IGARSS.2017.8127556

KUMAR, A., GIRI, R. K., TALOOR, A. K., & SINGH, A. K. (2021). Rainfall trend, variability and changes over the state of Punjab, India 1981–2020: A geospatial approach. Remote Sensing Applications: Society and Environment, 23, 100595. https://doi.org/10.1016/J.RSASE.2021.100595

KUMAR, L., & MUTANGA, O. (2018). Google Earth Engine applications since inception: Usage, trends, and potential. Remote Sensing, 10(10). https://doi.org/10.3390/rs10101509

LALOUI, L., NUTH, M., & FRANÇOIS, B. (2013). Mechanics of Unsaturated Soils. In Mechanics of Unsaturated Geomaterials, 29–54. https://doi.org/10.1002/9781118616871.ch2

LASAPONARA, R., & MASINI, N. (2020). Big Earth Data for Cultural Heritage in the Copernicus Era. In Remote Sensing for Archaeology and Cultural Landscapes, 31–46. https://doi.org/10.1007/978-3-030-10979-0_3

LIESKOVSKÝ, T., FAIXOVÁ CHALACHANOVÁ, J., LESSOVÁ, L., & HORŇÁK, M. (2018). Analysis of LiDAR data with low density in the context of its applicability for the cultural heritage documentation. Advances and Trends in Geodesy, Cartography and Geoinformatics - Proceedings of the 10th International Scientific and Professional Conference on Geodesy, Cartography and Geoinformatics, 191–196. https://doi.org/10.1201/9780429505645-31/ANALYSIS-LIDAR-DATA-LOW-DENSITY-CONTEXT-APPLICABILITY-CULTURAL-HERITAGE-DOCUMENTATION-LIESKOVSKY-FAIXOVA-CHALACHANOVA-LESSOVA-HORNAK

LIU, J., FIIFI, D., HAGAN, T., LIU, Y., LIU, J. ;, HAGAN, D. F. T. ;, & LIU, Y. (2020). Global Land Surface Temperature Change (2003–2017) and Its Relationship with Climate Drivers: AIRS, MODIS, and ERA5-Land Based Analysis. Remote Sensing 13(1), 44. https://doi.org/10.3390/RS13010044

LOPEZ, T., AL BITAR, A., BIANCAMARIA, S., GÜNTNER, A., & JÄGGI, A. (2020). On the Use of Satellite Remote Sensing to Detect Floods and Droughts at Large Scales. Surveys in Geophysics, 41(6): 1461–1487. https://doi.org/10.1007/S10712-020-09618-0

LUO, L., WANG, X., GUO, H., LASAPONARA, R., ZONG, X., MASINI, N., WANG, G., SHI, P., KHATTELI, H., CHEN, F., TARIQ, S., SHAO, J., BACHAGHA, N., YANG, R., & YAO, Y. (2019a). Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: A review of the century (1907–2017). Remote Sensing of Environment, 232(March), 111280. https://doi.org/10.1016/j.rse.2019.111280

LUO, L., WANG, X., GUO, H., LASAPONARA, R., ZONG, X., MASINI, N., WANG, G., SHI, P., KHATTELI, H., CHEN, F., TARIQ, S., SHAO, J., BACHAGHA, N., YANG, R., & YAO, Y. (2019b). Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: A review of the century (1907–2017). Remote Sensing of Environment, 232. https://doi.org/10.1016/j.rse.2019.111280

MA, Y., WU, H., WANG, L., HUANG, B., RANJAN, R., ZOMAYA, A., & JIE, W. (2015). Remote sensing big data computing: Challenges and opportunities. Future Generation Computer Systems, 51: 47–60. https://doi.org/10.1016/j.future.2014.10.029

MARTÍN-DEL-RIO, J. J., FLORES-ALÉS, V., ALEJANDRE-SÁNCHEZ, F. J., & BLASCO-LÓPEZ, F. J. (2018). New Method for Historic Rammed-earth Wall Characterization: The Almohade Ramparts of Malaga and Seville. Https://Doi.Org/10.1080/00393630.2018.1544429, 64(6): 363–372. https://doi.org/10.1080/00393630.2018.1544429

MCGARRAGH, G., POULSEN, C., POVEY, A., THOMAS, G., CHRISTENSEN, M., SUS, O., SCHLUNDT, C., STAPELBERG, S., STENGEL, M., GRAINGER, D., MCGARRAGH, G., POULSEN, C., POVEY, A., THOMAS, G., CHRISTENSEN, M., SUS, O., SCHLUNDT, C., STAPELBERG, S., STENGEL, M., & GRAINGER, D. (2015). SNAP (Sentinel Application Platform) and the ESA Sentinel 3 Toolbox. ESASP, 734, 21. https://ui.adsabs.harvard.edu/abs/2015ESASP.734E..21Z/abstract

MILETO, C., & VEGAS, F. (2013). La restauración de la tapia en la Península Ibérica. Criterios, técnicas, resultados y perspectivas (C. Mileto & F. Vegas (eds.)). https://www.academia.edu/39838538/La_restauración_de_la_tapia_en_la_Península_Ibérica_Criterios_técnicas_resultados_y_perspectivas

MOREL, J. C., BUI, Q. B., & HAMARD, E. (2012). Weathering and durability of earthen material and structures. In Modern Earth Buildings: Materials, Engineering, Constructions and Applications, 282–303. Woodhead Publishing. https://doi.org/10.1533/9780857096166.2.282

MORENO, A. S. (1997). Estudios especiales de caracterización geotécnica y refuerzo del terreno. http://www.alhambra-patronato.es/ria/bitstream/handle/10514/14147/4 encriptado.pdf?sequence=3

MORENO FALCÓN, M., ORTIZ CALDERÓN, R., & ORTIZ CALDERÓN, P. (2021). Incendios en paisajes patrimoniales naturales: análisis y evaluación de riesgos en fortificaciones mediante el uso del Global Wildfire Information System. Revista PH, Iaph, 413–419. https://doi.org/10.33349/2021.104.4976

MORENO, M., ORTIZ, P., & ORTIZ, R. (2019). Vulnerability study of earth walls in urban fortifications using cause-effect matrixes and gis: The case of seville, carmona and estepa defensive fences. Mediterranean Archaeology and Archaeometry, 19(3): 119–138. https://doi.org/10.5281/zenodo.3583063

MOTA-LÓPEZ, M. I., MADERUELO-SANZ, R., PASTOR-VALLE, J. D., MENESES-RODRÍGUEZ, J. M., & ROMERO-CASADO, A. (2021). Analytical characterization of the almohad rammed-earth wall of Cáceres, Spain. Construction and Building Materials, 273. https://doi.org/10.1016/j.conbuildmat.2020.121676

MUÑOZ-SABATER, J., DUTRA, E., AGUSTÍ-PANAREDA, A., ALBERGEL, C., ARDUINI, G., BALSAMO, G., BOUSSETTA, S., CHOULGA, M., HARRIGAN, S., HERSBACH, H., MARTENS, B., MIRALLES, D. G., PILES, M., RODRÍGUEZ-FERNÁNDEZ, N. J., ZSOTER, E., BUONTEMPO, C., & THÉPAUT, J. N. (2021). ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth System Science Data, 13(9): 4349–4383. https://doi.org/10.5194/ESSD-13-4349-2021

MUTANGA, O., & KUMAR, L. (2019). Google Earth Engine Applications. Remote Sensing, 11(5): 591. https://doi.org/10.3390/rs11050591

NIROUMAND, H., AKBARI, R., KHANLARI, K., GÜLTEKIN, A. B., & BARCELO, J. A. (2021). A Systematic Literature Review of Rammed Earth Walls. Soil Mechanics and Foundation Engineering, 58(4): 295–301. https://doi.org/10.1007/S11204-021-09742-Y

OLIVEIRA, M. L. S., DARIO, C., TUTIKIAN, B. F., EHRENBRING, H. Z., ALMEIDA, C. C. O., & SILVA, L. F. O. (2019). Historic building materials from Alhambra: Nanoparticles and global climate change effects. Journal of Cleaner Production, 232: 751–758. https://doi.org/10.1016/J.JCLEPRO.2019.06.019

ONTIVEROS ORTEGA, E., SEBASTIAN PARDO, E., VALVERDE ESPINOSA, I., & GALLEGO ROCA, I. (2008). Estudio de los materiales de construcción de las murallas del Albayzín ( Granada ). PH Boletín Del Instituto Andaluz Del Patrimonio Histórico, 66: 32–47.

OTCOVSKÁ, T. P., MUŽÍKOVÁ, B., & PADEVĚT, P. (2019). MECHANICAL PROPERTIES OF RAMMED EARTH WITH RESPECT TO CLAY MIXTURE COMPOSITION. Acta Polytechnica, 59(4): 372–383. https://doi.org/10.14311/AP.2019.59.0372

PAUPORTÉ, E., & SGAMBI, L. (2019). Vulnerability of earth material to water: A state of the art. Structures and Architecture: Bridging the Gap and Crossing Borders - Proceedings of the 4th International Conference on Structures and Architecture, ICSA, 123–1130. https://doi.org/10.1201/9781315229126-134/VULNERABILITY-EARTH-MATERIAL-WATER-STATE-ART-PAUPORT

PEREZ, C., & MUÑOZ, A. (2006). Teledetección: nociones y aplicaciones. https://books.google.es/books?hl=es&lr=&id=SfrGxbO1DT0C&oi=fnd&pg=PA1&dq=Perez,+C.,+%26+Muñoz,+A.+L.+(2006).+Teledetección:+nociones+y+aplicaciones&ots=pFeeWv5hHX&sig=dOIwagLtIF63jiX0CbF7yHI7_Yk

QUINTERO, N., VIEDMA, O., URBIETA, I. R., & MORENO, J. M. (2019). Assessing Landscape Fire Hazard by Multitemporal Automatic Classification of Landsat Time Series Using the Google Earth Engine in West-Central Spain. Forests, 10(6): 518. https://doi.org/10.3390/F10060518

REDDI, L. N., JAIN, A. K., & YUN, H. B. (2012). Soil materials for earth construction: Properties, classification and suitability testing. In Modern Earth Buildings: Materials, Engineering, Constructions and Applications 155–171. https://doi.org/10.1533/9780857096166.2.155

RETALIS, A., KATSANOS, D., MICHAELIDES, S., & TYMVIOS, F. (2022). Evaluation of high-resolution satellite precipitation data over the Mediterranean Region. Precipitation Science, 159–175. https://doi.org/10.1016/B978-0-12-822973-6.00017-2

RICHARDS, J., ZHAO, G., ZHANG, H., & VILES, H. (2019). A controlled field experiment to investigate the deterioration of earthen heritage by wind and rain. Heritage Science, 7(1): 1–13. https://doi.org/10.1186/S40494-019-0293-7/FIGURES/6

RICHARDS, JENNY, VILES, H., & GUO, Q. (2020). The importance of wind as a driver of earthen heritage deterioration in dryland environments. Geomorphology, 369, 107363. https://doi.org/10.1016/J.GEOMORPH.2020.107363

RODRÍGUEZ-GONZÁLVEZ, P., FERNÁNDEZ-PALACIOS, B. J., MUÑOZ-NIETO, ÁNGEL L., ARIAS-SANCHEZ, P., & GONZALEZ-AGUILERA, D. (2017). Mobile LiDAR System: New Possibilities for the Documentation and Dissemination of Large Cultural Heritage Sites. Remote Sensing 9(3): 189. https://doi.org/10.3390/RS9030189

RODRÍGUEZ PÉREZ, D., SÁNCHEZ CARNERO, N., DOMÍNGUEZ GÓMEZ, J. A., & MARTA PASTRANA, C. (2015). Cuestiones de teledetección (UNED (ed.)

RUFIN, P., RABE, A., NILL, L., & HOSTERT, P. (n.d.). GEE TIMESERIES EXPLORER FOR QGIS-INSTANT ACCESS TO PETABYTES OF EARTH OBSERVATION DATA. https://doi.org/10.5194/isprs-archives-XLVI-4-W2-2021-155-2021

SANTOS, C. A. G., BRASIL NETO, R. M., NASCIMENTO, T. V. M. DO, SILVA, R. M. DA, MISHRA, M., & FRADE, T. G. (2021). Geospatial drought severity analysis based on PERSIANN-CDR-estimated rainfall data for Odisha state in India (1983–2018). Science of The Total Environment, 750:141258. https://doi.org/10.1016/J.SCITOTENV.2020.141258

SARIKHANI, A., DEHGHANI, M., KARIMI-JASHNI, A., & SAADAT, S. (2021). A New Approach for Dust Storm Detection Using MODIS Data. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 45(2): 963–969. https://doi.org/10.1007/S40996-020-00508-4/TABLES/1

SERRANO-CHACÓN, Á. R., MASCORT-ALBEA, E. J., CANIVELL, J., ROMERO-HERNÁNDEZ, R., & JARAMILLO-MORILLA, A. (2021). Multi-Criteria Parametric Verifications for Stability Diagnosis of Rammed-Earth Historic Urban Ramparts Working as Retaining Walls. Applied Sciences, 11(6): 2744. https://doi.org/10.3390/APP11062744

SHEN, Z., YONG, B., GOURLEY, J. J., QI, W., LU, D., LIU, J., REN, L., HONG, Y., & ZHANG, J. (2020). Recent global performance of the Climate Hazards group Infrared Precipitation (CHIRP) with Stations (CHIRPS). Journal of Hydrology, 591, 125284. https://doi.org/10.1016/J.JHYDROL.2020.125284

SOBRINO, J. (2001). Teledetección. https://books.google.es/books?hl=es&lr=&id=Yb6xIldfoT0C&oi=fnd&pg=PA73&dq=Sobrino,+J.+A.+(2001).+Teledetección.+Universitat+de+Valencia.&ots=oTwCuqKD1m&sig=2gIM3L8U81oopLjIZYwx0-MCcmU

SUN, Q., MIAO, C., DUAN, Q., ASHOURI, H., SOROOSHIAN, S., & HSU, K.-L. (2018). A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Reviews of Geophysics, 56(1): 79–107. https://doi.org/10.1002/2017RG000574

TANG, G., CLARK, M. P., PAPALEXIOU, S. M., MA, Z., & HONG, Y. (2020). Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sensing of Environment, 240, 111697. https://doi.org/10.1016/J.RSE.2020.111697

TAPETE, D., & CIGNA, F. (2017a). Trends and perspectives of space-borne SAR remote sensing for archaeological landscape and cultural heritage applications. Journal of Archaeological Science: Reports, 14: 716–726. https://doi.org/10.1016/J.JASREP.2016.07.017

TAPETE, D., & CIGNA, F. (2017b). Trends and perspectives of space-borne SAR remote sensing for archaeological landscape and cultural heritage applications. Journal of Archaeological Science: Reports, 14: 716–726. https://doi.org/10.1016/J.JASREP.2016.07.017

TETZNER, D., THOMAS, E., & ALLEN, C. (2019). A Validation of ERA5 Reanalysis Data in the Southern Antarctic Peninsula—Ellsworth Land Region, and Its Implications for Ice Core Studies. Geosciences, 9(7): 289. https://doi.org/10.3390/GEOSCIENCES9070289

THEMISTOCLEOUS, K., & DANEZIS, C. (2020a). Monitoring Cultural Heritage Sites Affected by Geo-Hazards Using In Situ and SAR Data: The Choirokoitia Case Study. 285–308. https://doi.org/10.1007/978-3-030-10979-0_16

THEMISTOCLEOUS, K., & DANEZIS, C. (2020b). Monitoring Cultural Heritage Sites Affected by Geo-Hazards Using In Situ and SAR Data: The Choirokoitia Case Study. 285–308. https://doi.org/10.1007/978-3-030-10979-0_16

TITOLO, A. (2021). Use of Time-Series NDWI to Monitor Emerging Archaeological Sites: Case Studies from Iraqi Artificial Reservoirs. Remote Sensing, 13(4): 786. https://doi.org/10.3390/rs13040786

TRIER, Ø. D., REKSTEN, J. H., & LØSETH, K. (2021). Automated mapping of cultural heritage in Norway from airborne lidar data using faster R-CNN. International Journal of Applied Earth Observation and Geoinformation, 95, 102241. https://doi.org/10.1016/J.JAG.2020.102241

VILLACRESES, J. P., GRANADOS, J., CAICEDO, B., TORRES-RODAS, P., & YÉPEZ, F. (2021). Seismic and hydromechanical performance of rammed earth walls under changing environmental conditions. Construction and Building Materials, 300, 124331. https://doi.org/10.1016/J.CONBUILDMAT.2021.124331

WELLMANN, T., SCHUG, F., HAASE, D., PFLUGMACHER, D., & VAN DER LINDEN, S. (2020). Green growth? On the relation between population density, land use and vegetation cover fractions in a city using a 30-years Landsat time series. Landscape and Urban Planning, 202, 103857. https://doi.org/10.1016/J.LANDURBPLAN.2020.103857

WENG, Q. (2014). Scale issues in remote sensing. John Wiley & Sons. ISBN : 1-118-80162-8.

XIE, Y., ZHANG, W., & QU, J. J. (2017). Detection of Asian Dust Storm Using MODIS Measurements. Remote Sensing, 9(8), 869. https://doi.org/10.3390/RS9080869

ZHANG, X., ZHANG, T., ZHOU, P., SHAO, Y., & GAO, S. (2017). Validation Analysis of SMAP and AMSR2 Soil Moisture Products over the United States Using Ground-Based Measurements. Remote Sensing, 9(2), 104. https://doi.org/10.3390/RS9020104

Published
2022-06-16
How to Cite
Moreno Falcón, M., Ortiz Calderón, R., & Ortiz Caderón, P. (2022). Review of satellite resources to assess environmental threats in rammed earth fortifications. Ge-Conservacion, 21(1), 309-328. https://doi.org/10.37558/gec.v21i1.1132