Revisión de recursos satelitales para evaluar amenazas ambientales en fortificaciones de tapia
Resumen
La naturaleza de las fortificaciones en tapia y las condiciones ambientales del entorno en el que se ubican condicionan las patologías que estas estructuras sufren ante la presencia de fuentes de humedad y fuertes vientos. Este trabajo tiene como objetivo revisar los principales mecanismos de degradación de las fortificaciones en tapia y evaluar el uso de la teledetección como herramienta de registro de las amenazas medioambientales que afectan a su preservación. Las imágenes y productos satélites seleccionados ofrecen información sobre precipitación, humedad del suelo, temperatura, intensidad, dirección y presencia de partículas en el viento. El uso de metodologías de análisis estadístico de grandes volúmenes de imágenes satelitales permite obtener máximas, medias y mínimas diarias, mensuales y anuales de estas variables. La aplicación de los recursos satelitales GPM, SMAP, MODIS, Merra-2 y el análisis estadístico de grandes volúmenes de imágenes para la conservación preventiva en Andalucía resulta de utilidad para monitorear las principales amenazas que afectan a las fortificaciones en tapia a nivel global: humedad, viento y temperatura.
Descargas
Citas
ABATE, N., & LASAPONARA, R. (2019). Preventive archaeology based on open remote sensing data and tools: The cases of Sant’Arsenio (SA) and Foggia (FG), Italy. Sustainability (Switzerland), 11(15). https://doi.org/10.3390/su11154145
AGAPIOU, A. (2017). Remote sensing heritage in a petabyte-scale: satellite data and heritage Earth Engine© applications. International Journal of Digital Earth, 10(1), 85–102. https://doi.org/10.1080/17538947.2016.1250829
AGAPIOU, A., & LYSANDROU, V. (2021). Observing thermal conditions of historic buildings through earth observation data and big data engine. Sensors, 21(13). https://doi.org/10.3390/S21134557
AGAPIOU, A., LYSANDROU, V., & HADJIMITSIS, D. G. (2020). Earth observation contribution to cultural heritage disaster risk management: Case study of eastern mediterranean open air archaeological monuments and sites. Remote Sensing, 12(8). https://doi.org/10.3390/RS12081330
ALAHACOON, N., & EDIRISINGHE, M. (2021). Spatial Variability of Rainfall Trends in Sri Lanka from 1989 to 2019 as an Indication of Climate Change. ISPRS International Journal of Geo-Information 2021, 10(2): 84. https://doi.org/10.3390/IJGI10020084
AONASHI, K., AWAKA, J., HIROSE, M., KOZU, T., KUBOTA, T., LIU, G., SHIGE, S., KIDA, S., SETO, S., TAKAHASHI, N., & TAKAYABU, Y. N. (2009). GSMaP Passive Microwave Precipitation Retrieval Algorithm : Algorithm Description and Validation. Journal of the Meteorological Society of Japan. Ser. II, 87A: 119–136. https://doi.org/10.2151/JMSJ.87A.119
ARRIGONI, A., BECKETT, C., CIANCIO, D., & DOTELLI, G. (2017). Life cycle analysis of environmental impact vs. durability of stabilised rammed earth. Construction and Building Materials, 142: 128–136. https://doi.org/10.1016/J.CONBUILDMAT.2017.03.066
ASHOURI, H., HSU, K. L., SOROOSHIAN, S., BRAITHWAITE, D. K., KNAPP, K. R., CECIL, L. D., NELSON, B. R., & PRAT, O. P. (2015a). PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. Bulletin of the American Meteorological Society, 96(1): 69–83. https://doi.org/10.1175/BAMS-D-13-00068.1
ASHOURI, H., HSU, K. L., SOROOSHIAN, S., BRAITHWAITE, D. K., KNAPP, K. R., CECIL, L. D., NELSON, B. R., & PRAT, O. P. (2015b). PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies. Bulletin of the American Meteorological Society, 96(1): 69–83. https://doi.org/10.1175/BAMS-D-13-00068.1
ÁVILA, F., PUERTAS, E., & GALLEGO, R. (2021). Characterization of the mechanical and physical properties of unstabilized rammed earth: A review. Construction and Building Materials, 270, 121435. https://doi.org/10.1016/J.CONBUILDMAT.2020.121435
AVRAM, E., GUILLAUD, H., & HARDY, M. (2001). Characterization of Earthen Materials, in Terra Literature Review. An Overview of Research in Earthen Architecture Conservation.
AWANGE, J., & KIEMA, J. (2019). Fundamentals of Remote Sensing, 115–123. Springer, Cham. https://doi.org/10.1007/978-3-030-03017-9_7
BECKETT, C. T. S., JAQUIN, P. A., & MOREL, J. C. (2020). Weathering the storm: A framework to assess the resistance of earthen structures to water damage. Construction and Building Materials, 242, 118098. https://doi.org/10.1016/J.CONBUILDMAT.2020.118098
BISQUERT, M., SÁNCHEZ, J. M., & CASELLES, V. (2014). Modeling Fire Danger in Galicia and Asturias (Spain) from MODIS Images. Remote Sensing, 6(1): 540–554. https://doi.org/10.3390/RS6010540
BUI, Q. B., MOREL, J. C., VENKATARAMA REDDY, B. V., & GHAYAD, W. (2009). Durability of rammed earth walls exposed for 20 years to natural weathering. Building and Environment, 44(5): 912–919. https://doi.org/10.1016/J.BUILDENV.2008.07.001
BUI, QUOC BAO, MOREL, J. C., HANS, S., & WALKER, P. (2014a). Effect of moisture content on the mechanical characteristics of rammed earth. Construction and Building Materials, 54: 163–169. https://doi.org/10.1016/J.CONBUILDMAT.2013.12.067
BUI, QUOC BAO, MOREL, J. C., HANS, S., & WALKER, P. (2014b). Effect of moisture content on the mechanical characteristics of rammed earth. Construction and Building Materials, 54: 163–169. https://doi.org/10.1016/J.CONBUILDMAT.2013.12.067
CAI, J., ZHANG, Y., LI, Y., SAN LIANG, X., & JIANG, T. (2017). Analyzing the Characteristics of Soil Moisture Using GLDAS Data: A Case Study in Eastern China. Applied Sciences 7(6): 566. https://doi.org/10.3390/APP7060566
CANIVEL, J., & GRACIANI, A. (2012). Critical analysis of interventions in historical rammed-earth walls. Military buildings in the ancient Kingdom of Seville. In Mileto C., Vegas F., & Cristini V. (Eds.), Rammed Earth Conservation, Taylor & Francis Group, 289–295.
CANIVELL GARCÍA DE PAREDES, J. (2011). Metodología de diagnóstico y caracterización de fábricas históricas de tapia = Methodology for diagnosis and characterization of historical rammed-earth walls. https://dialnet.unirioja.es/servlet/tesis?codigo=24661&info=resumen&idioma=SPA
CHEN, F., LASAPONARA, R., & MASINI, N. (2017). An overview of satellite synthetic aperture radar remote sensing in archaeology: From site detection to monitoring. Journal of Cultural Heritage, 23: 5–11. https://doi.org/10.1016/J.CULHER.2015.05.003
CHEN, F., ZHOU, W., XU, H., PARCHARIDIS, I., LIN, H., & FANG, C. (2020). Space Technology Facilitates the Preventive Monitoring and Preservation of the Great Wall of the Ming Dynasty: A Comparative Study of the Qingtongxia and Zhangjiakou Sections in China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 5719–5729. https://doi.org/10.1109/JSTARS.2020.3023297
CHUVIECO, E. (2016). Fundamentals of satellite remote sensing: An environmental approach. https://books.google.es/books?hl=es&lr=&id=-nCmCwAAQBAJ&oi=fnd&pg=PP1&dq=CHUVIECO,+E.+y+HUETE,+A.+2016.+Fundamentals+of+satellite+remote+sensing,+Boca+Raton,+436+pp.&ots=H5bE48vBCx&sig=9xuUxZa-JG1ybjXzMtqsNkw6i0g
CHUVIECO, & EMILIO. (2007). Mirar desde el espacio o mirar hacia otro lado: tendencias en teledetección. In Documents d’Anàlisi Geogràfica (Issue 50). https://www.raco.cat/index.php/DocumentsAnalisi/article/view/86622
COOK, M., SCHOTT, J. R., MANDEL, J., & RAQUENO, N. (2014a). Development of an Operational Calibration Methodology for the Landsat Thermal Data Archive and Initial Testing of the Atmospheric Compensation Component of a Land Surface Temperature (LST) Product from the Archive. Remote Sensing 6(11): 11244–11266. https://doi.org/10.3390/RS61111244
COOK, M., SCHOTT, J. R., MANDEL, J., & RAQUENO, N. (2014b). Development of an Operational Calibration Methodology for the Landsat Thermal Data Archive and Initial Testing of the Atmospheric Compensation Component of a Land Surface Temperature (LST) Product from the Archive. Remote Sensing 6(11): 11244–11266. https://doi.org/10.3390/RS61111244
CORREIA, M., GUERRERO, L., & CROSBY, A. (2016). Technical Strategies for Conservation of Earthen Archaeological Architecture. 17(3): 224–256. https://doi.org/10.1080/13505033.2015.1129799
CUCA, B., & HADJIMITSIS, D. G. (2017). Space technology meets policy: An overview of Earth Observation sensors for monitoring of cultural landscapes within policy framework for Cultural Heritage. Journal of Archaeological Science: Reports, 14: 727–733. https://doi.org/10.1016/j.jasrep.2017.05.001
CUCCURULLO, A., GALLIPOLI, D., BRUNO, A. W., AUGARDE, C., HUGHES, P., & LA BORDERIE, C. (2021). A comparative study of the effects of particle grading and compaction effort on the strength and stiffness of earth building materials at different humidity levels. Construction and Building Materials, 306, 124770. https://doi.org/10.1016/J.CONBUILDMAT.2021.124770
ELFADALY, A., & LASAPONARA, R. (2019). On the use of satellite imagery and GIS tools to detect and characterize the urbanization around heritage sites: The case studies of the Catacombs of Mustafa Kamel in Alexandria, Egypt and the Aragonese Castle in Baia, Italy. Sustainability (Switzerland), 11(7). https://doi.org/10.3390/SU11072110
ELFADALY, A., WAFA, O., ABOUARAB, M. A. R., GUIDA, A., SPANU, P. G., & LASAPONARA, R. (2017). Geo-environmental estimation of land use changes and its effects on Egyptian temples at Luxor City. ISPRS International Journal of Geo-Information, 6(11). https://doi.org/10.3390/ijgi6110378
ENTEKHABI, D., NJOKU, E. G., O’NEILL, P. E., KELLOGG, K. H., CROW, W. T., EDELSTEIN, W. N., ENTIN, J. K., GOODMAN, S. D., JACKSON, T. J., JOHNSON, J., KIMBALL, J., PIEPMEIER, J. R., KOSTER, R. D., MARTIN, N., MCDONALD, K. C., MOGHADDAM, M., MORAN, S., REICHLE, R., SHI, J. C., … VAN ZYL, J. (2010). The soil moisture active passive (SMAP) mission. Proceedings of the IEEE, 98(5): 704–716. https://doi.org/10.1109/JPROC.2010.2043918
FALCÓN, M. M., & RUZ, R. D. (2020). PATRIMONIALIZACIÓN DE ARCHIVOS Y BIBLIOTECAS HISTÓRICOS UNIVERSITARIOS: EL CASO DE LA COLECCIÓN WORMALD DE LA UNIVERSIDAD DE TARAPACÁ. Revista de Historia Social y de Las Mentalidades, 24(2): 265–290. https://doi.org/10.35588/RHSM.V24I2.4251
FEDONIUK, M. A., KOVALCHUK, I. P., FESYUK, V. O., KIRCHUK, R. V., MERLENKO, I. M., & BONDARCHUK, S. P. (2021). Differences in the assessment of vegetation indexes in the EO-Browser and EOS landviewer services (on the example of Lutsk district lands). 20th International Conference Geoinformatics: Theoretical and Applied Aspects, 2021(1): 1–6. https://doi.org/10.3997/2214-4609.20215521134/CITE/REFWORKS
FUNK, C., PETERSON, P., LANDSFELD, M., PEDREROS, D., DATA, J. V.-S., & 2015, U. (2015). The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Nature. Com. https://www.nature.com/articles/sdata201566).
GANDREAU, D., & DELBOY, L. (2012). World heritage inventory of earthen architecture, 2012 (Crat. UNESCO (ed.)). CRATerre-ENSAG.
GARCÍA-SORIANO, L., & MILETO, C. (2015). Intervention construction techniques in monumental rammed earth architecture in Spain through ministry archives (1980–2013). Building Materials, IV, 3–6.
GEER, A. J., BAORDO, F., BORMANN, N., CHAMBON, P., ENGLISH, S. J., KAZUMORI, M., LAWRENCE, H., LEAN, P., LONITZA, K., & LUPU, C. (2017). The growing impact of satellite observations sensitive to humidity, cloud and precipitation. Quarterly Journal of the Royal Meteorological Society, 143(709): 3189–3206. https://doi.org/10.1002/QJ.3172
GERARD, P., MAHDAD, M., ROBERT MCCORMACK, A., & FRANÇOIS, B. (2015). A unified failure criterion for unstabilized rammed earth materials upon varying relative humidity conditions. Construction and Building Materials, 95: 437–447. https://doi.org/10.1016/J.CONBUILDMAT.2015.07.100
GHANE EZABADIA, N., AJDAR, S., & JAMALI, A. A. (2021). Analysis of dust changes using satellite images in Giovanni NASA and Sentinel-5P in Google Earth Engine in western Iran. JOURNAL OF NATURE AND SPATIAL SCIENCES, 1(1): 17–26. https://doi.org/10.30495/jonass.2021.680327
GHAZAL, N. K. (2020). Monitoring dust storm using normalized difference dust index (NDDI) and brightness temperature variation in Simi arid areas over Iraq. Iraqi Journal of Physics, 18(45): 68–75. https://doi.org/10.30723/ijp.18.45.68-75
GIUFFRIDA, G., CAPONETTO, R., & NOCERA, F. (2019). Hygrothermal properties of raw earth materials: A literature review. In Sustainability (Switzerland) 11(19): 5342. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/su11195342
GOMES, M. I., GONÇALVES, T. D., & FARIA, P. (2014). Unstabilized rammed earth: Characterization of material collected from old constructions in south portugal and comparison to normative requirements. International Journal of Architectural Heritage, 8(2): 185–212. https://doi.org/10.1080/15583058.2012.683133
GORELICK, N., HANCHER, M., DIXON, M., ILYUSHCHENKO, S., THAU, D., & MOORE, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202: 18–27. https://doi.org/10.1016/j.rse.2017.06.031
GU, Y., BROWN, J. F., VERDIN, J. P., & WARDLOW, B. (2007). A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophysical Research Letters, 34(6): L06407. https://doi.org/10.1029/2006GL029127
GUTIÉRREZ-CARRILLO, M. L., GUERRERO DELGADO, MC. C., SÁNCHEZ RAMOS, J., ARCO DÍAZ, J., BESTUÉ CARDIEL, I., & ÁLVAREZ DOMÍNGUEZ, S. (2021). Mitigating damage on heritage structures by continuous conservation using thermal real-time monitoring. Case study of Ziri Wall, city of Granada, Spain. Journal of Cleaner Production, 296, 126522. https://doi.org/10.1016/J.JCLEPRO.2021.126522
HADJIMITSIS, D., AGAPIOU, A., ALEXAKIS, D., & SARRIS, A. (2013). Exploring natural and anthropogenic risk for cultural heritage in Cyprus using remote sensing and GIS. International Journal of Digital Earth, 6(2): 115–142. https://doi.org/10.1080/17538947.2011.602119
HADJIMITSIS, D. G., THEMISTOCLEOUS, K., CUCA, B., AGAPIOU, A., LYSANDROU, V., LASAPONARA, R., MASINI, N., & SCHREIER, G. (2020). Remote Sensing for Archaeology and Cultural Landscapes : Best Practices and Perspectives Across Europe and the Middle East (T. K. Cuca Branka, A. A. Lysandrou Vasiliki, L. R. Masini Nicola, & Schreier Gunter (eds.)). http://www.springer.com/series/10182
HAMARD, E., CAMMAS, C., FABBRI, A., RAZAKAMANANTSOA, A., CAZACLIU, B., & MOREL, J. C. (2016). Historical Rammed Earth Process Description Thanks to Micromorphological Analysis. Http://Dx.Doi.Org/10.1080/15583058.2016.1222462, 11(3): 314–323. https://doi.org/10.1080/15583058.2016.1222462
HAMARD, E., CAMMAS, C., LEMERCIER, B., CAZACLIU, B., & MOREL, J. C. (2020). Micromorphological description of vernacular cob process and comparison with rammed earth. Frontiers of Architectural Research, 9(1): 203–215. https://doi.org/10.1016/J.FOAR.2019.06.007
HART, S., RAYMOND, K., WILLIAMS, C. J., JOHNSON, J., DEGAYNER, J., & GUEBARD, M. C. (2021). Precipitation impacts on earthen architecture for better implementation of cultural resource management in the US Southwest. Heritage Science, 9(1): 1–18. https://doi.org/10.1186/s40494-021-00615-z
HERSBACH, H., BELL, B., BERRISFORD, P., HIRAHARA, S., HORÁNYI, A., MUÑOZ-SABATER, J., NICOLAS, J., PEUBEY, C., RADU, R., SCHEPERS, D., SIMMONS, A., SOCI, C., ABDALLA, S., ABELLAN, X., BALSAMO, G., BECHTOLD, P., BIAVATI, G., BIDLOT, J., BONAVITA, M., … THÉPAUT, J. N. (2020a). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730): 1999–2049. https://doi.org/10.1002/QJ.3803
HERSBACH, H., BELL, B., BERRISFORD, P., HIRAHARA, S., HORÁNYI, A., MUÑOZ-SABATER, J., NICOLAS, J., PEUBEY, C., RADU, R., SCHEPERS, D., SIMMONS, A., SOCI, C., ABDALLA, S., ABELLAN, X., BALSAMO, G., BECHTOLD, P., BIAVATI, G., BIDLOT, J., BONAVITA, M., … THÉPAUT, J. N. (2020b). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730): 1999–2049. https://doi.org/10.1002/QJ.3803
HSU, J., HUANG, W. R., LIU, P. Y., & LI, X. (2021). Validation of CHIRPS Precipitation Estimates over Taiwan at Multiple Timescales. Remote Sensing 13(2): 254. https://doi.org/10.3390/RS13020254
HUNTINGTON, J. L., HEGEWISCH, K. C., DAUDERT, B., MORTON, C. G., ABATZOGLOU, J. T., MCEVOY, D. J., & ERICKSON, T. (2017). Climate Engine: Cloud Computing and Visualization of Climate and Remote Sensing Data for Advanced Natural Resource Monitoring and Process Understanding. Bulletin of the American Meteorological Society, 98(11): 2397–2410. https://doi.org/10.1175/BAMS-D-15-00324.1
IADANZA, C., CACACE, C., DEL CONTE, S., SPIZZICHINO, D., CESPA, S., & TRIGILA, A. (2013). Cultural Heritage, Landslide Risk and Remote Sensing in Italy. Landslide Science and Practice: Risk Assessment, Management and Mitigation, 6: 491–499. https://doi.org/10.1007/978-3-642-31319-6_65
Instituto Andaluz del patrimonio Histórico [IAPH] (s.f) Guía Digital del Patrimonio Cultural de Andalucía https://guiadigital.iaph.es/
JAMALI, A. A., GHORBANI KALKHAJEH, R., RANDHIR, T. O., & HE, S. (2022). Modeling relationship between land surface temperature anomaly and environmental factors using GEE and Giovanni. Journal of Environmental Management, 302, 113970. https://doi.org/10.1016/J.JENVMAN.2021.113970
JAQUIN, P. A., AUGARDE, C. E., & GERRARD, C. M. (2008). Chronological Description of the Spatial Development of Rammed Earth Techniques. Http://Dx.Doi.Org/10.1080/15583050801958826, 2(4): 377–400. https://doi.org/10.1080/15583050801958826
JIMÉNEZ DELGADO, M. C., & GUERRERO, I. C. (2007). The selection of soils for unstabilised earth building: A normative review. In Construction and Building Materials 21(2): 237–251. Elsevier. https://doi.org/10.1016/j.conbuildmat.2005.08.006
KARIYAWASAM, K. K. G. K. D., & JAYASINGHE, C. (2016). Cement stabilized rammed earth as a sustainable construction material. Construction and Building Materials, 105: 519–527. https://doi.org/10.1016/J.CONBUILDMAT.2015.12.189
KIM, Y., VAN ZYL, J. J., CHARBONNEAU, F., TRUDEL, M., & FERNANDES, R. (2009). A Time-Series Approach to Estimate Soil Moisture Using Polarimetric Radar Data. IEEE Trans. Geosci. Remote Sens, 47: 15–17.
KOSTA, A., PARASKEVOPOULOS, I., AGAPIOU, A., BATTISTIN, F., SERPETTI, M., WALDOCH, F., RĄCZKOWSKI, W., IORIO, A. DI, ANGELI, S. DE, & HADJIMITSIS, D. (2020a). Remote sensing techniques for archaeology: a state of art analysis of SAR methods for land movement. Https://Doi.Org/10.1117/12.2571722, 11524: 105–119. https://doi.org/10.1117/12.2571722
KOSTA, A., PARASKEVOPOULOS, I., AGAPIOU, A., BATTISTIN, F., SERPETTI, M., WALDOCH, F., RĄCZKOWSKI, W., IORIO, A. DI, ANGELI, S. DE, & HADJIMITSIS, D. (2020b). Remote sensing techniques for archaeology: a state of art analysis of SAR methods for land movement. Https://Doi.Org/10.1117/12.2571722, 11524: 105–119. https://doi.org/10.1117/12.2571722
KUBOTA, T., AONASHI, K., USHIO, T., SHIGE, S., TAKAYABU, Y. N., ARAI, Y., TASHIMA, T., KACHI, M., & OKI, R. (2017). Recent progress in global satellite mapping of precipitation (GSMAP) product. International Geoscience and Remote Sensing Symposium (IGARSS), 2017-July, 2712–2715. https://doi.org/10.1109/IGARSS.2017.8127556
KUMAR, A., GIRI, R. K., TALOOR, A. K., & SINGH, A. K. (2021). Rainfall trend, variability and changes over the state of Punjab, India 1981–2020: A geospatial approach. Remote Sensing Applications: Society and Environment, 23, 100595. https://doi.org/10.1016/J.RSASE.2021.100595
KUMAR, L., & MUTANGA, O. (2018). Google Earth Engine applications since inception: Usage, trends, and potential. Remote Sensing, 10(10). https://doi.org/10.3390/rs10101509
LALOUI, L., NUTH, M., & FRANÇOIS, B. (2013). Mechanics of Unsaturated Soils. In Mechanics of Unsaturated Geomaterials, 29–54. https://doi.org/10.1002/9781118616871.ch2
LASAPONARA, R., & MASINI, N. (2020). Big Earth Data for Cultural Heritage in the Copernicus Era. In Remote Sensing for Archaeology and Cultural Landscapes, 31–46. https://doi.org/10.1007/978-3-030-10979-0_3
LIESKOVSKÝ, T., FAIXOVÁ CHALACHANOVÁ, J., LESSOVÁ, L., & HORŇÁK, M. (2018). Analysis of LiDAR data with low density in the context of its applicability for the cultural heritage documentation. Advances and Trends in Geodesy, Cartography and Geoinformatics - Proceedings of the 10th International Scientific and Professional Conference on Geodesy, Cartography and Geoinformatics, 191–196. https://doi.org/10.1201/9780429505645-31/ANALYSIS-LIDAR-DATA-LOW-DENSITY-CONTEXT-APPLICABILITY-CULTURAL-HERITAGE-DOCUMENTATION-LIESKOVSKY-FAIXOVA-CHALACHANOVA-LESSOVA-HORNAK
LIU, J., FIIFI, D., HAGAN, T., LIU, Y., LIU, J. ;, HAGAN, D. F. T. ;, & LIU, Y. (2020). Global Land Surface Temperature Change (2003–2017) and Its Relationship with Climate Drivers: AIRS, MODIS, and ERA5-Land Based Analysis. Remote Sensing 13(1), 44. https://doi.org/10.3390/RS13010044
LOPEZ, T., AL BITAR, A., BIANCAMARIA, S., GÜNTNER, A., & JÄGGI, A. (2020). On the Use of Satellite Remote Sensing to Detect Floods and Droughts at Large Scales. Surveys in Geophysics, 41(6): 1461–1487. https://doi.org/10.1007/S10712-020-09618-0
LUO, L., WANG, X., GUO, H., LASAPONARA, R., ZONG, X., MASINI, N., WANG, G., SHI, P., KHATTELI, H., CHEN, F., TARIQ, S., SHAO, J., BACHAGHA, N., YANG, R., & YAO, Y. (2019a). Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: A review of the century (1907–2017). Remote Sensing of Environment, 232(March), 111280. https://doi.org/10.1016/j.rse.2019.111280
LUO, L., WANG, X., GUO, H., LASAPONARA, R., ZONG, X., MASINI, N., WANG, G., SHI, P., KHATTELI, H., CHEN, F., TARIQ, S., SHAO, J., BACHAGHA, N., YANG, R., & YAO, Y. (2019b). Airborne and spaceborne remote sensing for archaeological and cultural heritage applications: A review of the century (1907–2017). Remote Sensing of Environment, 232. https://doi.org/10.1016/j.rse.2019.111280
MA, Y., WU, H., WANG, L., HUANG, B., RANJAN, R., ZOMAYA, A., & JIE, W. (2015). Remote sensing big data computing: Challenges and opportunities. Future Generation Computer Systems, 51: 47–60. https://doi.org/10.1016/j.future.2014.10.029
MARTÍN-DEL-RIO, J. J., FLORES-ALÉS, V., ALEJANDRE-SÁNCHEZ, F. J., & BLASCO-LÓPEZ, F. J. (2018). New Method for Historic Rammed-earth Wall Characterization: The Almohade Ramparts of Malaga and Seville. Https://Doi.Org/10.1080/00393630.2018.1544429, 64(6): 363–372. https://doi.org/10.1080/00393630.2018.1544429
MCGARRAGH, G., POULSEN, C., POVEY, A., THOMAS, G., CHRISTENSEN, M., SUS, O., SCHLUNDT, C., STAPELBERG, S., STENGEL, M., GRAINGER, D., MCGARRAGH, G., POULSEN, C., POVEY, A., THOMAS, G., CHRISTENSEN, M., SUS, O., SCHLUNDT, C., STAPELBERG, S., STENGEL, M., & GRAINGER, D. (2015). SNAP (Sentinel Application Platform) and the ESA Sentinel 3 Toolbox. ESASP, 734, 21. https://ui.adsabs.harvard.edu/abs/2015ESASP.734E..21Z/abstract
MILETO, C., & VEGAS, F. (2013). La restauración de la tapia en la Península Ibérica. Criterios, técnicas, resultados y perspectivas (C. Mileto & F. Vegas (eds.)). https://www.academia.edu/39838538/La_restauración_de_la_tapia_en_la_Península_Ibérica_Criterios_técnicas_resultados_y_perspectivas
MOREL, J. C., BUI, Q. B., & HAMARD, E. (2012). Weathering and durability of earthen material and structures. In Modern Earth Buildings: Materials, Engineering, Constructions and Applications, 282–303. Woodhead Publishing. https://doi.org/10.1533/9780857096166.2.282
MORENO, A. S. (1997). Estudios especiales de caracterización geotécnica y refuerzo del terreno. http://www.alhambra-patronato.es/ria/bitstream/handle/10514/14147/4 encriptado.pdf?sequence=3
MORENO FALCÓN, M., ORTIZ CALDERÓN, R., & ORTIZ CALDERÓN, P. (2021). Incendios en paisajes patrimoniales naturales: análisis y evaluación de riesgos en fortificaciones mediante el uso del Global Wildfire Information System. Revista PH, Iaph, 413–419. https://doi.org/10.33349/2021.104.4976
MORENO, M., ORTIZ, P., & ORTIZ, R. (2019). Vulnerability study of earth walls in urban fortifications using cause-effect matrixes and gis: The case of seville, carmona and estepa defensive fences. Mediterranean Archaeology and Archaeometry, 19(3): 119–138. https://doi.org/10.5281/zenodo.3583063
MOTA-LÓPEZ, M. I., MADERUELO-SANZ, R., PASTOR-VALLE, J. D., MENESES-RODRÍGUEZ, J. M., & ROMERO-CASADO, A. (2021). Analytical characterization of the almohad rammed-earth wall of Cáceres, Spain. Construction and Building Materials, 273. https://doi.org/10.1016/j.conbuildmat.2020.121676
MUÑOZ-SABATER, J., DUTRA, E., AGUSTÍ-PANAREDA, A., ALBERGEL, C., ARDUINI, G., BALSAMO, G., BOUSSETTA, S., CHOULGA, M., HARRIGAN, S., HERSBACH, H., MARTENS, B., MIRALLES, D. G., PILES, M., RODRÍGUEZ-FERNÁNDEZ, N. J., ZSOTER, E., BUONTEMPO, C., & THÉPAUT, J. N. (2021). ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth System Science Data, 13(9): 4349–4383. https://doi.org/10.5194/ESSD-13-4349-2021
MUTANGA, O., & KUMAR, L. (2019). Google Earth Engine Applications. Remote Sensing, 11(5): 591. https://doi.org/10.3390/rs11050591
NIROUMAND, H., AKBARI, R., KHANLARI, K., GÜLTEKIN, A. B., & BARCELO, J. A. (2021). A Systematic Literature Review of Rammed Earth Walls. Soil Mechanics and Foundation Engineering, 58(4): 295–301. https://doi.org/10.1007/S11204-021-09742-Y
OLIVEIRA, M. L. S., DARIO, C., TUTIKIAN, B. F., EHRENBRING, H. Z., ALMEIDA, C. C. O., & SILVA, L. F. O. (2019). Historic building materials from Alhambra: Nanoparticles and global climate change effects. Journal of Cleaner Production, 232: 751–758. https://doi.org/10.1016/J.JCLEPRO.2019.06.019
ONTIVEROS ORTEGA, E., SEBASTIAN PARDO, E., VALVERDE ESPINOSA, I., & GALLEGO ROCA, I. (2008). Estudio de los materiales de construcción de las murallas del Albayzín ( Granada ). PH Boletín Del Instituto Andaluz Del Patrimonio Histórico, 66: 32–47.
OTCOVSKÁ, T. P., MUŽÍKOVÁ, B., & PADEVĚT, P. (2019). MECHANICAL PROPERTIES OF RAMMED EARTH WITH RESPECT TO CLAY MIXTURE COMPOSITION. Acta Polytechnica, 59(4): 372–383. https://doi.org/10.14311/AP.2019.59.0372
PAUPORTÉ, E., & SGAMBI, L. (2019). Vulnerability of earth material to water: A state of the art. Structures and Architecture: Bridging the Gap and Crossing Borders - Proceedings of the 4th International Conference on Structures and Architecture, ICSA, 123–1130. https://doi.org/10.1201/9781315229126-134/VULNERABILITY-EARTH-MATERIAL-WATER-STATE-ART-PAUPORT
PEREZ, C., & MUÑOZ, A. (2006). Teledetección: nociones y aplicaciones. https://books.google.es/books?hl=es&lr=&id=SfrGxbO1DT0C&oi=fnd&pg=PA1&dq=Perez,+C.,+%26+Muñoz,+A.+L.+(2006).+Teledetección:+nociones+y+aplicaciones&ots=pFeeWv5hHX&sig=dOIwagLtIF63jiX0CbF7yHI7_Yk
QUINTERO, N., VIEDMA, O., URBIETA, I. R., & MORENO, J. M. (2019). Assessing Landscape Fire Hazard by Multitemporal Automatic Classification of Landsat Time Series Using the Google Earth Engine in West-Central Spain. Forests, 10(6): 518. https://doi.org/10.3390/F10060518
REDDI, L. N., JAIN, A. K., & YUN, H. B. (2012). Soil materials for earth construction: Properties, classification and suitability testing. In Modern Earth Buildings: Materials, Engineering, Constructions and Applications 155–171. https://doi.org/10.1533/9780857096166.2.155
RETALIS, A., KATSANOS, D., MICHAELIDES, S., & TYMVIOS, F. (2022). Evaluation of high-resolution satellite precipitation data over the Mediterranean Region. Precipitation Science, 159–175. https://doi.org/10.1016/B978-0-12-822973-6.00017-2
RICHARDS, J., ZHAO, G., ZHANG, H., & VILES, H. (2019). A controlled field experiment to investigate the deterioration of earthen heritage by wind and rain. Heritage Science, 7(1): 1–13. https://doi.org/10.1186/S40494-019-0293-7/FIGURES/6
RICHARDS, JENNY, VILES, H., & GUO, Q. (2020). The importance of wind as a driver of earthen heritage deterioration in dryland environments. Geomorphology, 369, 107363. https://doi.org/10.1016/J.GEOMORPH.2020.107363
RODRÍGUEZ-GONZÁLVEZ, P., FERNÁNDEZ-PALACIOS, B. J., MUÑOZ-NIETO, ÁNGEL L., ARIAS-SANCHEZ, P., & GONZALEZ-AGUILERA, D. (2017). Mobile LiDAR System: New Possibilities for the Documentation and Dissemination of Large Cultural Heritage Sites. Remote Sensing 9(3): 189. https://doi.org/10.3390/RS9030189
RODRÍGUEZ PÉREZ, D., SÁNCHEZ CARNERO, N., DOMÍNGUEZ GÓMEZ, J. A., & MARTA PASTRANA, C. (2015). Cuestiones de teledetección (UNED (ed.)
RUFIN, P., RABE, A., NILL, L., & HOSTERT, P. (n.d.). GEE TIMESERIES EXPLORER FOR QGIS-INSTANT ACCESS TO PETABYTES OF EARTH OBSERVATION DATA. https://doi.org/10.5194/isprs-archives-XLVI-4-W2-2021-155-2021
SANTOS, C. A. G., BRASIL NETO, R. M., NASCIMENTO, T. V. M. DO, SILVA, R. M. DA, MISHRA, M., & FRADE, T. G. (2021). Geospatial drought severity analysis based on PERSIANN-CDR-estimated rainfall data for Odisha state in India (1983–2018). Science of The Total Environment, 750:141258. https://doi.org/10.1016/J.SCITOTENV.2020.141258
SARIKHANI, A., DEHGHANI, M., KARIMI-JASHNI, A., & SAADAT, S. (2021). A New Approach for Dust Storm Detection Using MODIS Data. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 45(2): 963–969. https://doi.org/10.1007/S40996-020-00508-4/TABLES/1
SERRANO-CHACÓN, Á. R., MASCORT-ALBEA, E. J., CANIVELL, J., ROMERO-HERNÁNDEZ, R., & JARAMILLO-MORILLA, A. (2021). Multi-Criteria Parametric Verifications for Stability Diagnosis of Rammed-Earth Historic Urban Ramparts Working as Retaining Walls. Applied Sciences, 11(6): 2744. https://doi.org/10.3390/APP11062744
SHEN, Z., YONG, B., GOURLEY, J. J., QI, W., LU, D., LIU, J., REN, L., HONG, Y., & ZHANG, J. (2020). Recent global performance of the Climate Hazards group Infrared Precipitation (CHIRP) with Stations (CHIRPS). Journal of Hydrology, 591, 125284. https://doi.org/10.1016/J.JHYDROL.2020.125284
SOBRINO, J. (2001). Teledetección. https://books.google.es/books?hl=es&lr=&id=Yb6xIldfoT0C&oi=fnd&pg=PA73&dq=Sobrino,+J.+A.+(2001).+Teledetección.+Universitat+de+Valencia.&ots=oTwCuqKD1m&sig=2gIM3L8U81oopLjIZYwx0-MCcmU
SUN, Q., MIAO, C., DUAN, Q., ASHOURI, H., SOROOSHIAN, S., & HSU, K.-L. (2018). A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Reviews of Geophysics, 56(1): 79–107. https://doi.org/10.1002/2017RG000574
TANG, G., CLARK, M. P., PAPALEXIOU, S. M., MA, Z., & HONG, Y. (2020). Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote Sensing of Environment, 240, 111697. https://doi.org/10.1016/J.RSE.2020.111697
TAPETE, D., & CIGNA, F. (2017a). Trends and perspectives of space-borne SAR remote sensing for archaeological landscape and cultural heritage applications. Journal of Archaeological Science: Reports, 14: 716–726. https://doi.org/10.1016/J.JASREP.2016.07.017
TAPETE, D., & CIGNA, F. (2017b). Trends and perspectives of space-borne SAR remote sensing for archaeological landscape and cultural heritage applications. Journal of Archaeological Science: Reports, 14: 716–726. https://doi.org/10.1016/J.JASREP.2016.07.017
TETZNER, D., THOMAS, E., & ALLEN, C. (2019). A Validation of ERA5 Reanalysis Data in the Southern Antarctic Peninsula—Ellsworth Land Region, and Its Implications for Ice Core Studies. Geosciences, 9(7): 289. https://doi.org/10.3390/GEOSCIENCES9070289
THEMISTOCLEOUS, K., & DANEZIS, C. (2020a). Monitoring Cultural Heritage Sites Affected by Geo-Hazards Using In Situ and SAR Data: The Choirokoitia Case Study. 285–308. https://doi.org/10.1007/978-3-030-10979-0_16
THEMISTOCLEOUS, K., & DANEZIS, C. (2020b). Monitoring Cultural Heritage Sites Affected by Geo-Hazards Using In Situ and SAR Data: The Choirokoitia Case Study. 285–308. https://doi.org/10.1007/978-3-030-10979-0_16
TITOLO, A. (2021). Use of Time-Series NDWI to Monitor Emerging Archaeological Sites: Case Studies from Iraqi Artificial Reservoirs. Remote Sensing, 13(4): 786. https://doi.org/10.3390/rs13040786
TRIER, Ø. D., REKSTEN, J. H., & LØSETH, K. (2021). Automated mapping of cultural heritage in Norway from airborne lidar data using faster R-CNN. International Journal of Applied Earth Observation and Geoinformation, 95, 102241. https://doi.org/10.1016/J.JAG.2020.102241
VILLACRESES, J. P., GRANADOS, J., CAICEDO, B., TORRES-RODAS, P., & YÉPEZ, F. (2021). Seismic and hydromechanical performance of rammed earth walls under changing environmental conditions. Construction and Building Materials, 300, 124331. https://doi.org/10.1016/J.CONBUILDMAT.2021.124331
WELLMANN, T., SCHUG, F., HAASE, D., PFLUGMACHER, D., & VAN DER LINDEN, S. (2020). Green growth? On the relation between population density, land use and vegetation cover fractions in a city using a 30-years Landsat time series. Landscape and Urban Planning, 202, 103857. https://doi.org/10.1016/J.LANDURBPLAN.2020.103857
WENG, Q. (2014). Scale issues in remote sensing. John Wiley & Sons. ISBN : 1-118-80162-8.
XIE, Y., ZHANG, W., & QU, J. J. (2017). Detection of Asian Dust Storm Using MODIS Measurements. Remote Sensing, 9(8), 869. https://doi.org/10.3390/RS9080869
ZHANG, X., ZHANG, T., ZHOU, P., SHAO, Y., & GAO, S. (2017). Validation Analysis of SMAP and AMSR2 Soil Moisture Products over the United States Using Ground-Based Measurements. Remote Sensing, 9(2), 104. https://doi.org/10.3390/RS9020104
- Los autores conservan los derechos de autor y propiedad intelectual, y garantizan a la revista Ge-Conservación y al GEIIC el Copyright© de los derechos de edición y publicación por cualquier medio y soporte. Las obras de dichos autores además se pueden publicar bajo una Creative Commons Attribution License que autoriza ser distribuido gratuitamente, copiado y exhibido por terceros si se muestra en los créditos la autoría y procedencia original en esta revista, y no se puede obtener ningún beneficio comercial por parte de terceros, ni tampoco se pueden realizar obras derivadas.
- Los artículos podrán ser utilizados para fines científicos y formativos, pero nunca con fines comerciales, expresamente sancionado por la Ley.
- La información contenida en los artículos es responsabilidad exclusiva de los autores.
- La revista Ge-Conservación y los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, situarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en esta revista.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) después de su publicación en la revista Ge-Conservación, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados por el autor.
- Los datos personales suministrados por los autores únicamente serán utilizados para los fines de la revista y no serán proporcionados a terceros.